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A linear parameter must be consumed exactly once in the body of its function. When declaring resources
such as file handles and manually managed memory as linear arguments, a linear type system can verify that
these resources are used safely. However, writing code with explicit linear arguments requires bureaucracy.
This paper presents linear constraints, a front-end feature for linear typing that decreases the bureaucracy of
working with linear types. Linear constraints are implicit linear arguments that are filled in automatically by
the compiler. We present linear constraints as a qualified type system, together with an inference algorithm
which extends ghc’s existing constraint solver algorithm. Soundness of linear constraints is ensured by the
fact that they desugar into Linear Haskell.

CCS Concepts: • Software and its engineering → Language features; Functional languages; Formal lan-
guage definitions.

Additional Key Words and Phrases: GHC, Haskell, laziness, linear logic, linear types, constraints, inference

1 INTRODUCTION
Linear type systems have seen a renaissance in recent years in various mainstream program-
ming communities. Rust’s ownership system guarantees memory safety for systems programmers,
Haskell’s ghc 9.0 includes support for linear types, and even dependently typed programmers can
now use linear types with Idris 2. All of these systems are vastly different in ergonomics and scope.
Rust uses dedicated syntax and code generation to support management of resources, while Linear
Haskell is a type system change without any other support from the compiler. Linear Haskell is
designed to be general purpose, but using linear arguments to emulate Rust’s ownership model is
a painful exercise, requiring the programmer to carefully thread resource tokens.

To get a sense of the power and the pain of using linear types, consider the following function:
read2AndDiscard ::MArray a ⊸ (Ur a,Ur a)
read2AndDiscard arr0 =
let (arr1, x) = read arr0 0

(arr2, y) = read arr1 1
() = free arr2

in (x, y)
This function reads the first two elements of an array and returns them after deallocating the
array. Linearity enables the array library to ensure that there is only one reference to the array, and
therefore it can be mutated in-place without violating referential transparency. After the array has
been freed, it is no longer possible to read or write to it. Notice that the read function consumes the
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1:2 Bernardy, Eisenberg, Kiss, Spiwack, Wu

array and returns a fresh array, to be used in future operations. Operationally, the array remains the
same, but each operation assigns a new name to it, thus facilitating tracking references statically.
Finally, free consumes the array without returning a new one, statically guaranteeing that it can no
longer be used.1 The values x and y read from the array are returned; their types include elements
wrapped by the Ur (pronounced “unrestricted”) type, allowing them to be used arbitrarily many
times. This works because read2AndDiscard takes a restricted-use array containing unrestricted
elements. In a non-linear language, one would have to forgo referential transparency to handle
mutable operations either by using a monadic interface or allowing arbitrary effects. Compare the
above function with what one would write in a non-linear, impure language:

read2AndDiscard ::MArray a → (a, a)
read2AndDiscard arr =

let x = read arr 0
y = read arr 1
() = unsafeFree arr

in (x, y)

This non-linear version does not guarantee that there is a unique reference to the array, so freeing
the array is a potentially unsafe operation. However, it is simpler because there is less bureaucracy
to manage: we are clearly interacting with same array throughout, and this version makes that
apparent. We see here a clear tension between extra safety and clarity of code—one we wish, as
language designers, to avoid. How can we get the compiler to see that the array is used safely
without explicit threading?

Rust introduces the borrow checker for this very purpose. Our approach is, in some ways, more
lightweight: we show in this paper how a natural generalisation of Haskell’s type class constraints
does the trick. We call our new constraints linear constraints. Like class constraints, linear con-
straints are propagated implicitly by the compiler. Like linear arguments, they can safely be used
to track resources such as arrays or file handles. Thus, linear constraints are the combination
of these two concepts, which have been studied independently elsewhere [Bernardy et al. 2017;
Cervesato et al. 2000; Hodas and Miller 1994; Vytiniotis et al. 2011].

With our extension, we canwrite a new pure version of read2AndDiscard which does not require
explicit threading of the array:

read2AndDiscard :: (Read n,Write n) =◦UArray a n → (Ur a,Ur a)
read2AndDiscard arr =

let pack x = read arr 0
pack y = read arr 1
() = free arr

in (x, y)

The only changes from the impure version are that this version explicitly requires having read
and write access to the array, and explicit pack annotations are used to indicate the binders that
require special treatment (Section 8.3 suggests how we can get rid of the pack, too). Crucially, the
resource representing the ownership of the array is a linear constraint and is separate from the
array itself, which no longer needs to be threaded manually.

Our contributions are as follows:

1We assume that all pattern bindings in let-expressions are strict. This ensures that the array actually gets freed. We discuss
this point in Section 2.
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Linear Constraints 1:3

• A system of qualified types that allows a constraint assumption to be given a multiplicity.
Linear assumptions are used precisely once in the body of a definition (Section 5). This sys-
tem supports examples that have motivated the design of several resource-aware systems,
such as ownership à la Rust (Section 4), or capabilities in the style of Mezzo [Pottier and
Protzenko 2013] or ats [Zhu and Xi 2005]; accordingly, our system points towards a possi-
ble unification of these lines of research.

• An inference algorithm that respects the multiplicity of assumptions. We prove that this
algorithm is sound with respect to our type system (Section 6).

• A core language (directly adapted from Linear Haskell [Bernardy et al. 2017]) that supports
linear functions. Expressions in our qualified type system desugar into this core language,
and we prove that the output of our desugaring is well-typed (Section 7).

Our design is intended to work well with other features of Haskell and its implementation within
ghc and we have a prototype implementation.

2 BACKGROUND: LINEAR HASKELL
This section, mostly cribbed from Bernardy et al. [2017, Section 2.1], describes our baseline ap-
proach, as released in GHC 9.0. Linear Haskell adds a new type of functions, dubbed linear func-
tions, and written a⊸ b.2 A linear function consumes its argument exactly once. More precisely,
Linear Haskell lays it out thusly:

Meaning of the linear arrow: f :: a ⊸ b guarantees that if (f u) is consumed exactly
once, then the argument u is consumed exactly once.

To make sense of this statement we need to know what “consumed exactly once” means. Our
definition is based on the type of the value concerned:
Definition 2.1 (Consume exactly once).
• To consume a value of atomic base type (like Int) exactly once, just evaluate it.
• To consume a function exactly once, apply it to one argument, and then consume its result

exactly once.
• To consume a pair exactly once, pattern-match on it, and then consume each component

exactly once.
• In general, to consume a value of an algebraic datatype exactly once, pattern-match on it,

and then consume all its linear components exactly once.

Note that a linear arrow specifies how the function uses its argument. It does not restrict the
arguments to which the function can be applied. In particular, a linear function cannot assume that
it is given the unique pointer to its argument. For example, if f :: a⊸ b, then the following is fine:

g :: a → (b, b)
g x = (f x, f x)
The type of g makes no guarantees about how it uses x. In particular, g can pass x to f .

The read function in Section 1 consumes the array it operates on. Therefore, the same array can
no longer be used in further operations: doing so would result in a type error. To resolve this, a
new name for the same array is produced by each operation.

From the perspective of the programmer, this is unwanted boilerplate. The approach with linear
constraints is to let the array behave non-linearly, and let its capabilities (i.e., having read or write
2The linear function type and its notation come from linear logic [Girard 1987], to which the phrase linear types refers.
All the various design of linear typing in the literature amount to adding such a linear function type, but details can vary
wildly. See Bernardy et al. [2017, Section 6] for an analysis of alternative approaches.
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1:4 Bernardy, Eisenberg, Kiss, Spiwack, Wu

new :: Int → (MArray a ⊸ Ur r) ⊸ Ur r

write ::MArray a ⊸ Int → a → MArray a

read ::MArray a ⊸ Int → (MArray a,Ur a)
free ::MArray a ⊸ ()

(a) Linear Types

type RW n = (Read n,Write n)
new :: Int → (∀ n. RW n=◦UArray a n → Ur r) ⊸ Ur r

write :: RW n=◦UArray a n → Int → a → () R RW n

read :: Read n=◦UArray a n → Int → Ur a R Read n

free :: RW n=◦UArray a n → ()

(b) Linear Constraints

Fig. 1. Interfaces for mutable arrays

access) be linear constraints. Once these capabilities are consumed, the array can no longer be read
from or written to without triggering a compile time error.

In Section 1 and in the rest of the paper, we use pattern matches in let bindings. By default in
Haskell, patterns in lets are lazy, which means that let (a, b) = p in () will not actually evalu-
ate the pair. To force evaluation, a strictness annotation can be added: let !(a, b) = p in (). Pat-
tern matching in linear let bindings must always be strict in Linear Haskell, so writing the lazy
version would be rejected by the compiler. To simplify the presentation, we assume that all pat-
terns in let bindings are strict. Strict let pattern bindings can be desugared into case expressions:
case p of (a, b) → ().

3 WORKINGWITH LINEAR CONSTRAINTS
Consider the Haskell function show:
show :: Show a⇒ a → String

In addition to the function arrow→, common to all functional programming languages, the type of
this function features a constraint arrow⇒. Everything to the left of a constraint arrow is called a
constraint, and will be highlighted in blue throughout the paper. Here Show a is a class constraint.

Constraints are handled implicitly by the typechecker. That is, if we want to show the integer
n :: Int we would write show n, and the typechecker is responsible for proving that Show Int holds,
without intervention from the programmer.

For our read2AndDiscard example, the (Read n,Write n) (abbreviated as RW n) constraint rep-
resents read and write access to the array tagged with the type variable n. (The full api under
consideration appears in Fig. 1b.) That is, the constraint RW n is provable if and only if the array
tagged with n is readable and writable. This constraint is linear: it must be consumed (that is, used
as an assumption in a function call) exactly once. In order to manage linearity implicitly, this paper
introduces a linear constraint arrow (=◦), much like Linear Haskell introduces a linear function
arrow (⊸). Constraints to the left of a linear constraint arrow are linear constraints. Using the
linear constraint RW n, we can give the following type to free:
free :: RW n=◦UArray a n → ()

There are a few things to notice:
• We have introduced a new type variable n. In contrast, the version in Figure 1a without

linear constraints has type free ::MArray a ⊸ (). The type variable n is a type-level tag used
to identify the array. Ideally, the linear constraint would refer directly to the array value, and
have the dependent type free :: (n :: Array a) → RW n=◦(). While giving a compile-time
name to a function argument is common in dependently typed languages such as ats [Xi
2017] or Idris, our approach, on the other hand, shows howwe can still link a run-time value
and a compile-time tag without needing any dependent types.
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Linear Constraints 1:5

• The run-time variable representing the array can now be used multiple times. Instead of
restricting the use of this variable, the linear constraint RW n controls access to the array.

• If we have a single, linear, RW n available, then after free there will not be any RW n left to
use, thus preventing the array from being used after freeing. This is precisely what we were
trying to achieve.

The above deals with freeing an array and ensuring that it cannot be used afterwards. However,
we still need to explain how a constraint RW n can come into scope. The type of new with linear
constraints is:

new :: Int → (∀ n. RW n=◦UArray a n → Ur r) ⊸ Ur r

This higher-rank function can be thought of as a computation that allocates an array in a scope.The
scope is given an array with read and write capability.The scope must return an unrestricted value
to ensure that the linear constraint cannot be embedded into the return value. The construction
here ensures that, within the scope, we can be sure both that there is one unique owner of the
array at all times, and that the array is freed at the end, given that the only way to remove the
RW n constraint is to use free.

We must also ensure that read can both promise to operate only on a readable array and that
the array remains readable afterwards. That is, read must both consume a linear constraint Read n
and also produce a fresh linear constraint Read n, as we see in Fig. 1b, and repeated here:

read :: Read n=◦UArray a n → Int → Ur a R Read n

This type has a new symbol, R, which allows us to pack a produced constraint with a returned value.
We will see in Section 4.2 that these produced constraints will also sometimes need to come with
fresh type variables. Combining these ideas, we introduce3 a type construction ∃ a1 ... an .t RQ,
where Q is a linear constraint (with the a1 ... an in scope) that is paired with the type t.4 Such
types are introduced with the pack constructor. When pattern-matching on a pack constructor, all
existentially quantified type variables are brought into scope and all the packed constraints are
assumed. We have now seen all the ingredients needed to write the read2AndDiscard example as
in Section 1.

3.1 Minimal Examples
To get a sense of how the features we introduce should behave, we now look at some simple
examples. Using constraints to represent limited resources allows the typechecker to reject certain
classes of ill-behaved programs. Accordingly, the following examples show the different reasons
a program might be rejected.

In what follows, we will be using a constraint C that is consumed by the useC function.

useC :: C =◦ Int

The type of useC indicates that it consumes the linear resource C exactly once.

3.1.1 Dithering. We reject this program:

dithering :: C =◦Bool → Int

dithering x = if x then useC else 10

3There is a variety of ways existential types can be worked into a language. The existentials we use here might best be
understood as a generalisation of those presented by Pierce [2002, Chapter 24]. However, a recent publication by Eisenberg
et al. [2021] works out an approach that will make linear constraints easier to use, as we discuss in Section 8.3.
4We freely omit the ∃ a1 ... an . or RQ parts when they are empty.
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1:6 Bernardy, Eisenberg, Kiss, Spiwack, Wu

The problem with dithering is that it does not unconditionally consume C: the branch where x ≡
True uses the resource C, whereas the other branch does not.

3.1.2 Neglecting. Now consider the type of the linear version of const:
const :: a ⊸ b → a

This function uses its first argument linearly, and ignores the second. Thus, the the second arrow
is unrestricted. One way to improperly use the linear const is by neglecting a linear variable:
neglecting :: C =◦ Int

neglecting = const 10 useC

The problem with neglecting is that, although useC is mentioned in this program, it is never con-
sumed: const does not use its second argument.The constraint C is not consumed exactly once, and
thus this program is rejected. The rule is that a linear constraint can only be consumed (linearly)
in a linear context. For example,
notNeglecting :: C =◦ Int

notNeglecting = const useC 10

is accepted, because the C constraint is passed on to useC which itself appears as an argument to
a linear function (whose result is itself consumed linearly).

3.1.3 Overusing. Finally, the following program is rejected because it uses C twice:
overusing :: C =◦(Int, Int)
overusing = (useC, useC)

4 APPLICATION: MEMORY OWNERSHIP
Let us now turn back to the more substantial example introduced in Section 1: manual memory
management. In functional programming languages like Haskell, memory deallocation is normally
the responsibility of a garbage collector. However, garbage collection is not always desirable, either
due to its (unpredictable) runtime costs, or because pointers exist between separately-managed
memory spaces (for example when calling foreign functions [Domínguez 2020]). In either case,
one must then resort to explicit memory allocation and deallocation. This task is error prone: one
can easily forget a deallocation (causing a memory leak) or deallocate several times (corrupting
data). In this sectionwe show how to build a Rust-style memorymanagement api as a library using
linear constraints. The library is a generalisation of the array library introduced in Section 1.

4.1 Capability constraints
Our approach, in the style of Rust, is to represent ownership of a memory location, and more
specifically, whether the reference is mutable or read-only. We use the linear constraints Read n
andWrite n, guarding read access and write access to a reference respectively. Because of linearity,
these constraints must be consumed, so the api can guarantee that the memory is deallocated
correctly. In Read n, n is a type variable (of a special kind Location) which represents a memory
location. Locations mediate the relationship between references and ownership constraints.

class Read (n :: Location) class Write (n :: Location)
To ensure referential transparency, writes can be done only when we are sure that no other part of
the program has read access to the reference. Therefore, writing also requires the read capability.
Thus we systematically use the RW n, pairing both the read and write capabilities.

With these components in place, we can provide an api for mutable references.
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Linear Constraints 1:7

data AtomRef (a :: Type) (n :: Location)

The type AtomRef is the type of references to values of a type a at location n. Allocation of a refer-
ence can be done using the following function. As with new, the return value must be unrestricted.

newRef :: (∀ n. RW n=◦AtomRef a n → Ur b) ⊸ Ur b

To read a reference, a simple Read constraint is demanded, and immediately returned. Writing is
handled similarly.

readRef :: Read n=◦AtomRef a n → Ur a R Read n

writeRef :: RW n=◦AtomRef a n → a → () R RW n

Note that the above primitives do not need to explicitly declare effects in terms of a monad or an-
other higher-order effect-tracking device: because the RW n constraint is linear, passing it suffices
to ensure proper sequencing of effects concerning location n.

Also note that readRef returns an unrestricted copy of the element, and writeRef copies an un-
restricted element into the location. This means that while AtomRef s are mutable, their contents
are always immutable structures.

Since there is a unique RW n constraint per reference, we can also use it to represent ownership
of the reference: access to RW n represents responsibility (and obligation) to deallocate n:

freeRef :: RW n=◦AtomRef a n → ()

4.2 Arrays
The above toolkit handles references to base types just fine. But what about storing references
in objects managed by the ownership system? In Section 1, we presented an interface for muta-
ble arrays whose contents are themselves immutable. Our approach scales beyond that use case,
supporting arrays of references, including arrays of (mutable) arrays.

data PArray (a :: Location → Type) (n :: Location)
newPArray :: Int → (∀ n. RW n=◦ PArray a n → Ur b) ⊸ Ur b

For this purpose we introduce the type PArray a n, where the kind of a is Location → Type: this
way we can easily enforce that each reference in the array refers to the same location n. Both
types AtomRef a and PArray a have kind Location → Type, and therefore one can allocate, and
manipulate arrays of arrays with this api. For example, an array of integers would have type
PArray (AtomRef Int) n, and indeed, the UArray type from Section 1 is a synonym for an array of
atomic references. An array of arrays of integerswould have type PArray (PArray (AtomRef Int)) n.
Thus, the framework handles nested mutable structures without any additional difficulty.

As discussed in Section 3, the scope of newPArray returns an unrestricted value to ensure that
the linear constraint is consumed within the scope (since linear values cannot be embedded into
an unrestricted value). As this is the only introduction form of RW n, it can safely be assumed to
be unique within the scope. An alternative design would be to require that the scope returns the
linear constraint: ∀ n.RW n=◦ PArray a n → b R RW n. This version is less flexible, because it
doesn’t allow the scope to deallocate or freeze the array.

The actual runtime value of a PArray is a pointer to a contiguous block of memory together with
the size of the memory block. This means that the length of the array can be accessed without
having ownership of the array: length :: PArray a n → Int. While the PArray reference itself is
managed by the garbage collector, the pointer it contains points to manually managed memory.
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1:8 Bernardy, Eisenberg, Kiss, Spiwack, Wu

When writing a reference (be it an array or an AtomRef ) in an array, ownership of the reference
is transferred to the array. Because the content of an array cell is linear, we can’t erase it when we
write, instead we get the old content back. To do so, we use the exchange primitive

exchange :: (RW n, RW p) =◦ a p → a n → () R (RW n, RW p)

which exchanges two references, together with the borrowing primitives described below.

4.2.1 Borrowing. The lendMut arr i k primitive lends access to the reference at index i in arr , to
a scope function k (in Rust terminology, the scope borrows an element of the array). Note that the
scope must return the read-write capability, so the ownership transfer is indeed temporary, and
the type system guarantees that the borrowed reference cannot be shared or deallocated. Indeed,
with this api, RW n and RW p are never simultaneously available.

lendMut :: RW n=◦ PArray a n → Int → (∀ p. RW p =◦ a p → r R RW p) ⊸ r R RW n

Because the elements of an array can be mutable structures (such as other arrays), reading can
only be done safely if we can ensure that no one else has access to the array while the element is
accessed. Otherwise, the array – including the element being read – could be mutated. Therefore,
gaining simple read access to an element needs to be done using a scoped api as well:

lend :: Read n=◦ PArray a n → Int → (∀ p. Read p =◦ a p → r R Read p) ⊸ r R Read n

For the special case of UArrays, a more traditional reading operation can be implemented, by
lending the reference to readRef which creates an unrestricted copy of the value. This copy is
under control of the garbage collector, and can escape the scope of the borrowing freely.

read :: Read n=◦UArray a n → Int → Ur a R Read n

read arr i = lend arr i readRef

4.2.2 Slices. It is also possible to give a safe interface to array slices. A slice represents a part of an
array and allows splitting the ownership of the array into multiple parts, shared between different
consumers. The ownership system means that slicing does not require copying.

Splitting consumes all capabilities of an array and returns two new arrays that represent the
contiguous blocks of memory before and starting at a given index.

split :: RW n=◦ PArray a n → Int → ∃ l r .Ur (PArray a l, PArray a r) R (RW l, RW r,Ur (Slices n l r))

In addition to the array capabilities, the output constraints also includeUr (Slices n l r), witnessing
the fact that locations l and r are components of n, so that they can be joined back together:

join :: (Ur (Slices n l r), RW r, RW l) =◦ PArray a l → PArray a r → Ur (PArray a n) R RW n

Note that the constraint Ur (Slices n l r) is unrestricted, which means that it is not necessary to
join the two arrays before deallocating them: they can be deallocated separately.

With these building blocks, we can now implement various utility functions on arrays, such as
swapping two elements of an array, which is shown in Figure 2. It is not so simple to implement5,
because we need two elements of an array simultaneously, but only one element can be borrowed
at a time. To solve this problem, we split the array into two slices such that the two indices fall in
two different slices. Then simply borrow the element i from the first slice, and j from the second
slice (using lendMut). Finally, we join the two slices back together.
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Linear Constraints 1:9

swap :: RW n=◦ PArray a n → Int → Int → () R RW n

swap arr i j | i ≡ j = pack ()
| i > j = swap arr j i

| i < j = let pack (Ur (l, r)) = split arr (i + 1)
pack () = lendMut l i (𝜆a𝑖 →

let pack () = lendMut r (j − (i + 1)) (𝜆a𝑗 →
let pack () = exchange a𝑖 a𝑗 in pack ()) in pack ())

pack (Ur ) = join l r

in pack ()

Fig. 2. Swapping two elements of an array

sort :: RW n=◦UArray Int n → () R RW n

sort arr = let len = length arr in
if len ⩽ 1 then pack ()
else let pack pivotIdx = partition arr

pack (Ur (l, r)) = split arr pivotIdx

(pack (), pack ()) = (sort l, sort r)
pack (Ur ) = join l r

in pack ()

partition :: RW n=◦UArray Int n → Int R RW n

partition arr =
let last = length arr − 1

pack (Ur pivot) = read arr last

go :: RW n=◦ Int → Int → Int R RW n

go l r

| l > r

= let pack () = swap arr last l in (pack l)
| otherwise
= let pack (Ur lVal) = read arr l in
if lVal > pivot

then let pack () = swap arr l r

in go l (r − 1)
else go (l + 1) r

in go 0 (last − 1)

Fig. 3. In-place quicksort

4.2.3 In-place quicksort. As an example of using the machinery defined above, we implement
an in-place, pure quicksort algorithm, given in Figure 3. The partition function is responsible for
picking a pivot element and reorganising the array elements such that each element preceding the
pivot will be less than or equal to it, and the elements after will be greater than the pivot. Once
finished, it returns the index of the pivot element; sort then splits the array at the pivot element and
recursively operates on the two slices. These recursive calls can be executed non-deterministically
(or, indeed, in parallel), as the type system guarantees that no data races can occur.

5 A QUALIFIED TYPE SYSTEM FOR LINEAR CONSTRAINTS
Wenow present our design for a qualified type system [Jones 1994] that supports linear constraints.
Our design, based on the work of Vytiniotis et al. [2011], is compatible with Haskell and ghc.

5.1 Multiplicities
Like in Linear Haskell we make use of a system ofmultiplicities, which describe howmany times a
function consumes its input. As multiplicities are central to our constraint calculus, we will colour
5Indeed, Rust’s implementation uses an unsafe block.
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1:10 Bernardy, Eisenberg, Kiss, Spiwack, Wu

them in blue like constraints. For our purposes, we need only the simplest system of multiplicity,
comprising 1 (representing linear functions) and 𝜔 (representing regular Haskell functions).

𝜋, 𝜌 F 1 | 𝜔 Multiplicities

The idea of multiplicity goes back at least to Kobayashi et al. [1999]. The power of multiplicities is
that they can encode the structural rules of linear logic with only the semiring operations: addition
and multiplication. Here and in the rest of the paper we adopt the convention that equations
defining a function by pattern matching are marked with a { to their left.{

𝜋 + 𝜌 = 𝜔

{
1·𝜋 = 𝜋
𝜔 ·𝜋 = 𝜔

Even though linear Haskell additionally supports multiplicity polymorphism, we do not support
multiplicity polymorphism on constraint arguments. Multiplicity polymorphism of regular func-
tion arguments is used to avoid duplicating the definition of higher-order functions. The prototyp-
ical example is map :: (a →𝑚 b) → [a] →𝑚 [b], where →𝑚 is the notation for a function arrow
of multiplicitym. First-order functions, on the other hand, do not need multiplicity polymorphism,
because linear functions can be 𝜂-expanded into unrestricted function as explained in Section 2.
Higher-order functions whose arguments are themselves constrained functions are rare, so we do
not yet see the need to extend multiplicity polymorphism to apply to constraints. Futhermore, it
is not clear how to extend the constraint solver of Section 6.3 to support multiplicity-polymorphic
constraints.

5.2 Simple Constraints and Entailment
Let us now turn to constraints themselves. We call constraints such as Read n or Write n atomic
constraints. The exact nature of atomic constraints is left unspecified: the set of atomic constraints
is a parameter of our qualified type system.

Definition 5.1 (Atomic constraints). The qualified type system is parameterised by a set, whose
elements are called atomic constraints. We use the variable q to denote atomic constraints.

Atomic constraints are assembled into simple constraints Q, which play the hybrid role of con-
straint contexts and (linear) logic formulae.The following operations workwith simple constraints:

Scaled atomic constraints 𝜋 ·q is a simple constraint, where 𝜋 specifies whether q is to be
used linearly or not.

Conjunction Two simple constraints can be paired upQ1 ⊗Q2. Semantically, this corresponds
to the multiplicative conjunction of linear logic. Tensor products represent pairs of con-
straints such as (Read n,Write n) from Haskell.

Empty conjunction Finally we need a neutral element 𝜀 to the tensor product. The empty
conjunction is used to represent functions which don’t require any constraints.

However, we do not define Q inductively, because we require certain equalities to hold:

Q1 ⊗Q2 = Q2 ⊗Q1

(Q1 ⊗Q2) ⊗Q3 = Q1 ⊗(Q2 ⊗Q3)
𝜔 ·q ⊗𝜔 ·q = 𝜔 ·q

Q ⊗ 𝜀 = Q

We thus say that a simple constraint is a pair combining a set of unrestricted constraints U
and a multiset of linear constraints L. The linear constraints must be stored in a multiset, because
assuming the same constraint twice is distinct from assuming it only once.
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Q ⊩ Q
if Q1 ⊩ Q2 and Q ⊗Q2 ⊩ Q3 then Q ⊗Q1 ⊩ Q3
if Q ⊩ Q1 ⊗Q2 then there exists Q′ and Q′′ such that Q = Q′ ⊗Q′′, Q′ ⊩ Q1 and Q′′ ⊩ Q2
if Q ⊩ 𝜀 then there exists Q′ such that Q = 𝜔 ·Q′

if Q1 ⊩ Q′
1 and Q2 ⊩ Q′

2 then Q1 ⊗Q2 ⊩ Q′
1 ⊗Q′

2
if Q ⊩ 𝜌 ·q then 𝜋 ·Q ⊩ (𝜋 ·𝜌)·q
if Q ⊩ (𝜋 ·𝜌)·q then there exists Q′ such that Q = 𝜋 ·Q′ and Q′ ⊩ 𝜌 ·q
if Q1 ⊩ Q2 then 𝜔 ·Q1 ⊩ Q2
if Q1 ⊩ Q2 then for all Q′, 𝜔 ·Q′ ⊗Q1 ⊩ Q2

Fig. 4. Requirements for the entailment relation Q1 ⊩ Q2

Definition 5.2 (Simple constraints).

U F . . . set of atomic constraints q
L F . . . multiset of atomic constraints q
Q F (U , L) simple constraints

We can now straightforwardly define the operations we need on simple constraints:

𝜀 = (∅, ∅)
{

1·q = (∅, q)
𝜔 ·q = (q, ∅) (U1, L1) ⊗(U2, L2) = (U1 ∪ U2, L1 ⊎ L2)

In practice, we do not need to concern ourselves with the concrete representation of Q as a pair
of sets, instead using the operations defined just above.

The semantics of simple constraints (and, indeed, of atomic constraints) is given by an entailment
relation. Just like the set of atomic constraints, the entailment relation is a parameter of our system

Definition 5.3 (Entailment relation). The qualified type system is parameterised by a relation
Q1 ⊩ Q2 between two simple constraints. The entailment relation must obey the laws listed in
Figure 4.

An important feature of simple constraints is that, while scaling syntactically happens at the
level of atomic constraints, these properties of scaling extend to scaling of arbitrary constraints.
Define 𝜋 ·Q as: {

1·(U , L) = (U , L)
𝜔 ·(U , L) = (U ∪ L, ∅)

Then the following properties hold

Lemma 5.4 (Scaling). If Q1 ⊩ Q2, then 𝜋 ·Q1 ⊩ 𝜋 ·Q2.

Lemma 5.5 (InveRsion of scaling). If Q1 ⊩ 𝜋 ·Q2, then Q1 = 𝜋 ·Q′ and Q′ ⊩ Q2 for some Q′.

CoRollaRy 5.6 (LineaR assumptions). If Q1 ⊩ 𝜔 ·Q2, then Q1 contains no linear assumptions.

Proofs of these lemmas (and others) appear in our anonymised supplementary material; they
can be proved by straightforward use of the properties in Figure 4.

5.3 Typing rules
With this material in place, we can now present our type system.The grammar is given in Figure 5,
which also includes the definitions of scaling on contexts 𝜋 ·Γ and addition of contexts Γ1+Γ2. Note
that addition on contexts is actually a partial function, as it requires that, if a variable x is bound in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2022.



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

1:12 Bernardy, Eisenberg, Kiss, Spiwack, Wu

a, b Type vars x, y Expression vars T Type constructors K Data constructors
𝜎 F ∀a.Q =◦𝜏 Type schemes
𝜏,𝜐 F a | ∃a.𝜏 RQ | 𝜏1 →𝜋 𝜏2 | T 𝜏 Types
Γ,Δ F • | Γ, x:𝜋𝜎 Contexts
e F x | K | 𝜆x .e | e1 e2 | pack e Expressions

| unpack x = e1 in e2 | case𝜋 e of {K𝑖 x𝑖 → e𝑖 }
| let𝜋 x = e1 in e2 | let𝜋 x : 𝜎 = e1 in e2

Context scaling 𝜋 ·Γ and addition of contexts Γ1 + Γ2 is defined as follows:{
𝜋 ·• = •

𝜋 ·(Γ, x:𝜌𝜎) = 𝜋 ·Γ, x:(𝜋 ·𝜌)𝜎


(Γ1, x:𝜋𝜎) + Γ2 = Γ1 + Γ′2 , x:(𝜋+𝜌)𝜎 where Γ2 = {x:𝜌𝜎} ∪ Γ′2

x ∉ Γ′2
(Γ1, x:𝜋𝜎) + Γ2 = Γ1 + Γ2, x:𝜋𝜎 where x ∉ Γ2

• + Γ2 = Γ2

Fig. 5. Grammar of the qualified type system

Q; Γ ⊢ e : 𝜏 (Expression typing)

E-VaR
Γ1 = x:1∀a.Q1 =◦𝜐

Q1 [𝜏/a]; Γ1 + 𝜔 ·Γ2 ⊢ x : 𝜐 [𝜏/a]

E-Abs
Q; Γ, x:𝜋𝜏1 ⊢ e : 𝜏2

Q; Γ ⊢ 𝜆x .e : 𝜏1 →𝜋 𝜏2

E-App
Q1; Γ1 ⊢ e1 : 𝜏1 →𝜋 𝜏

Q2; Γ2 ⊢ e2 : 𝜏1
Q1 ⊗ 𝜋 ·Q2; Γ1 + 𝜋 ·Γ2 ⊢ e1 e2 : 𝜏

E-PacK
Q; Γ ⊢ e : 𝜏 [𝜐/a]

Q ⊗Q1 [𝜐/a]; Γ ⊢ pack e : ∃a.𝜏 RQ1

E-UnpacK
Q1; Γ1 ⊢ e1 : ∃a.𝜏1 RQ

a fresh
Q2 ⊗Q; Γ2, x:1𝜏1 ⊢ e2 : 𝜏

Q1 ⊗Q2; Γ1 + Γ2 ⊢ unpack x = e1 in e2 : 𝜏

E-Let
Q1 ⊗Q; Γ1 ⊢ e1 : 𝜏1

Q2; Γ2, x:𝜋Q =◦𝜏1 ⊢ e2 : 𝜏
𝜋 ·Q1 ⊗Q2;𝜋 ·Γ1 + Γ2 ⊢ let𝜋 x = e1 in e2 : 𝜏

E-LetSig
Q1 ⊗Q; Γ1 ⊢ e1 : 𝜏1

a fresh 𝜎 = ∀a.Q =◦𝜏1
Q2; Γ2, x:𝜋∀a.Q =◦𝜏1 ⊢ e2 : 𝜏

𝜋 ·Q1 ⊗Q2;𝜋 ·Γ1 + Γ2 ⊢ let𝜋 x : 𝜎 = e1 in e2 : 𝜏

E-Case
Q1; Γ1 ⊢ e : T 𝜏

Ki : ∀a.𝜐 i →𝜋 i
T a

Q2; Γ2, xi:(𝜋 ·𝜋i)𝜐i [𝜏/a] ⊢ ei : 𝜏
𝜋 ·Q1 ⊗Q2;𝜋 ·Γ1 + Γ2 ⊢ case𝜋 e of {K𝑖 x𝑖 → e𝑖 } : 𝜏

E-Sub
Q1; Γ ⊢ e : 𝜏 Q ⊩ Q1

Q; Γ ⊢ e : 𝜏

Fig. 6. Qualified type system

both Γ1 and Γ2, then x is assigned the same type in both (but perhaps different multiplicities). This
partiality is not a problem in practice, as the required condition for combining contexts is always
satisfied.
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The typing rules are in Figure 6. A qualified type system [Jones 1994] such as ours introduces
a judgement of the form Q; Γ ⊢ e : 𝜏 , where Γ is a standard type context, and Q is a constraint
we have assumed to be true. Q behaves much like Γ, which will be instrumental for desugaring
in Section 7; the main difference is that Γ is addressed explicitly, whereas Q is used implicitly in
rule E-VaR.

The type system of Figure 6 is purely declarative: note, for example, that rule E-App does not
describe how to break the typing assumptions into constraints Q1/Q2 and contexts Γ1/Γ2. We will
see how to infer constraints in Section 6. Yet, this system is our ground truth: a system with a
simple enough definition that programmers can reason about typing. We do not directly give a
dynamic semantics to this language; instead, we will give it meaning via desugaring to a simpler
core language in Section 7.

We survey several distinctive features of our qualified type system below:

Linear functions. The type of linear functions is written a →1 b. Despite our focus on linear con-
straints, we still need linearity in ordinary arguments. Indeed, the linearity of arrows interacts in
interesting ways with linear constraints: If f : a →𝜔 b and x : 1·q =◦ a, then calling f x would actu-
ally use q many times. We must make sure it is impossible to derive 1·q; f :𝜔a →𝜔 b, x:𝜔1·q =◦ a ⊢
f x : b. Otherwise we could make, for instance, the overusing function from Section 3.1.3. You can
check that 1·q; f :𝜔a →𝜔 b, x:𝜔1·q =◦ a ⊢ f x : b indeed does not type check, because the scaling of
Q2 in rule E-App ensures that the constraint would be𝜔 ·q instead. On the other hand, it is perfectly
fine to have 1·q; f :𝜔a →1 b, x:𝜔1·q =◦ a ⊢ f x : b when f is a linear function.

Variables. As is standard, the rule E-VaR rule works in a context containing more than just the
used binding for x. However, crucially, our rule allows only unrestricted variables to be discarded;
linear variables must be used. We can see this in the rule by noticing that the context has an
unrestricted component 𝜔 ·Γ2. The Γ1 component might be restricted or might not, allowing this
rule to apply both for restricted and unrestricted x.

Data constructors. Data constructorsK don’t have a dedicated typing rule. Instead they are typed
using the rule E-VaR, where they are treated as if they were unrestricted variables.

Let-bindings. Bindings in a let may be for either linear or unrestricted variables. We could re-
quire all bindings to be linear and to implement unrestricted information only using Ur , but it is
very easy to add a multiplicity annotation on let, and so we do.

Local assumptions. Rule E-Let includes support for local assumptions. We thus have the abil-
ity to generalise a subset of the constraints needed by e1 (but not the type variables—no let-
generalisation here, though it could be added). The inference algorithm of Section 6 will not make
use of this possibility.

Existentials. We include ∃a.𝜏 RQ, as introduced in Section 3, together with the pack and unpack
constructions. See rules E-PacK and E-UnpacK.

6 CONSTRAINT INFERENCE
The type system of Figure 6 gives a declarative description of what programs are acceptable. We
now present the algorithmic counterpart to this system. Our algorithm is structured, unsurpris-
ingly, around generating and solving constraints, broadly following the template of Pottier and
Rémy [2005]. That is, our algorithm takes a pass over the abstract syntax entered by the user, gen-
erating constraints as it goes. Then, separately, we solve those constraints (that is, try to satisfy
them) in the presence of a set of assumptions, or we determine that the assumptions do not imply
that the constraints hold. In the latter case, we issue an error to the programmer.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2022.



638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

1:14 Bernardy, Eisenberg, Kiss, Spiwack, Wu

The procedure is responsible for inferring both types and constraints. For our type system, type
inference can be done independently from constraint inference. Indeed, we focus on the latter, and
defer type inference to an external oracle (such as [Matsuda 2020]).That is, we assume an algorithm
that produces typing derivations for the judgement Γ ⊢ e : 𝜏 , ignoring all the constraints. Then,
we describe a constraint generation algorithm that passes over these typing derivations. We can
make this simplification for two reasons:

• We do not formalise type equality constraints, and our implementation in ghc (Section 8.2.2)
takes care to not allow linear equality constraints to influence type inference. Indeed, a typ-
ical treatment of unification would be unsound for linear equalities, because it reuses the
same equality many times (or none at all). Linear equalities make sense (Shulman [2018]
puts linear equalities to great use), but they do not seem to lend themselves to automation.

• We do not support, or intend to support, multiplicity polymorphism in constraint arrows.
That is, the multiplicity of a constraint is always syntactically known to be either linear or
unrestricted.This way, no equality constraints (which might, conceivably, relate multiplicity
variables) can interfere with constraint resolution.

6.1 Wanted constraints
The constraints 𝐶 generated in our system have a richer logical structure than the simple con-
straints Q, above. Following ghc and echoing Vytiniotis et al. [2011], we call these wanted con-
straints: they are constraints which the constraint solver wants to prove. An unproved wanted
constraint results in a type error reported to the programmer.

𝐶 F Q | 𝐶1 ⊗𝐶2 | 𝐶1 &𝐶2 | 𝜋 ·(Q =◦𝐶) Wanted constraints

A simple constraint is a valid wanted constraint, and we have two forms of conjunction for wanted
constraints: the new 𝐶1 &𝐶2 construction (read 𝐶1 with 𝐶2), alongside the more typical 𝐶1 ⊗𝐶2.
These are connectives from linear logic: 𝐶1 ⊗𝐶2 is the multiplicative conjunction, and 𝐶1 &𝐶2 is
the additive conjunction. Both connectives are conjunctions, but they differ in meaning. To satisfy
𝐶1 ⊗𝐶2 one consumes the (linear) assumptions consumed by satisfying 𝐶1 and those consumed
by 𝐶2; if an assumed linear constraint is needed to prove both 𝐶1 and 𝐶2, then 𝐶1 ⊗𝐶2 will not
be provable, because that linear assumption cannot be used twice. On the other hand, satisfying
𝐶1 &𝐶2 requires that satisfying𝐶1 and𝐶2 must each consume the same assumptions, which𝐶1 &𝐶2

consumes as well. Thus, if 𝐶 is assumed linearly (and we have no other assumptions), then 𝐶 ⊗𝐶
is not provable, while 𝐶 &𝐶 is. The intuition, here, is that in 𝐶1 &𝐶2, only one of 𝐶1 or 𝐶2 will be
eventually used. “With” constraints arise from the branches in a case-expression.

The last form of wanted constraint𝐶 is an implication 𝜋 ·(Q =◦𝐶). Proving 𝜋 ·(Q =◦𝐶) allows us
to assume Q linearly while proving𝐶 , a total of 𝜋 times. These implications arise when we unpack
an existential package that contains a linear constraint and also when checking a let-binding. We
can define scaling over wanted constraints by recursion as follows, where we use scaling over
simple constraints in the simple-constraint case:

𝜋 ·(𝐶1 ⊗𝐶2) = 𝜋 ·𝐶1 ⊗ 𝜋 ·𝐶2

1·(𝐶1 &𝐶2) = 𝐶1 &𝐶2

𝜔 ·(𝐶1 &𝐶2) = 𝜔 ·𝐶1 ⊗𝜔 ·𝐶2

𝜋 ·(𝜌 ·(Q =◦𝐶)) = (𝜋 ·𝜌)·(Q =◦𝐶)
For the most part, scaling of wanted constraints is straightforward. The only peculiar case is when
we scale the additive conjunction 𝐶1 &𝐶2 by 𝜔 , the result is a multiplicative conjunction. The
intuition here is that when if we have both 𝜔 ·𝐶1 and 𝜔 ·𝐶2, then a choice between 𝐶1 and 𝐶2 can
be made 𝜔 times.
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Q ⊢ 𝐶 (Wanted-constraint entailment)

C-Dom
Q1 ⊩ Q2

Q1 ⊢ Q2

C-TensoR
Q1 ⊢ 𝐶1 Q2 ⊢ 𝐶2

Q1 ⊗Q2 ⊢ 𝐶1 ⊗𝐶2

C-With
Q ⊢ 𝐶1 Q ⊢ 𝐶2

Q ⊢ 𝐶1 &𝐶2

C-Impl
Q0 ⊗Q1 ⊢ 𝐶

𝜋 ·Q0 ⊢ 𝜋 ·(Q1 =◦𝐶)

Fig. 7. Wanted-constraint entailment

We define an entailment relation over wanteds in Figure 7. Note that this relation uses only
simple constraints Q as assumptions, as there is no way to assume the more elaborate 𝐶6.

Before wemove on to constraint generation proper, let us highlight a few technical, yet essential,
lemmas about the wanted-constraint entailment relation.

Lemma 6.1 (InveRsion). The inference rules of Q ⊢ 𝐶 can be read bottom-up as well as top-down,
as is required of Q1 ⊩ Q2 in Figure 4. That is:

• If Q ⊢ 𝐶1 ⊗𝐶2, then there exists Q1 and Q2 such that Q1 ⊢ 𝐶1, Q2 ⊢ 𝐶2, and Q = Q1 ⊗Q2.
• If Q ⊢ 𝐶1 &𝐶2, then Q ⊢ 𝐶1 and Q ⊢ 𝐶2.
• If Q ⊢ 𝜋 ·(Q2 =◦𝐶), then there exists Q1 such that Q1 ⊗Q2 ⊢ 𝐶 and Q = 𝜋 ·Q1

Lemma 6.2 (Scaling). If Q ⊢ 𝐶 , then 𝜋 ·Q ⊢ 𝜋 ·𝐶 .

Lemma 6.3 (InveRsion of scaling). If Q ⊢ 𝜋 ·𝐶 then Q′ ⊢ 𝐶 and Q = 𝜋 ·Q′ for some Q′.

6.2 Constraint generation
The process of inferring constraints is split into two parts: generating constraints, which we do in
this section, then solving them in Section 6.3. Constraint generation is described by the judgement
Γ ⊢▶ e : 𝜏 { 𝐶 (defined in Figure 8) which outputs a constraint 𝐶 required to make e typecheck.
The definition Γ ⊢▶ e : 𝜏 { 𝐶 is syntax directed, so it can directly be read as an algorithm, taking as
input a typing derivation for Γ ⊢ e : 𝜏 (produced by an external type inference oracle as discussed
above). Notably, the algorithm has access to the context splitting from the (previously computed)
typing derivation, and is thus indeed syntax directed.

The rules of Figure 8 constitute a mostly unsurprising translation of the rules of Figure 6, except
for the following points of interest:

Case expressions.Note the use of& in the conclusion of rule G-Case.We require that each branch
of a case expression use the exact same (linear) assumptions; this is enforced by combining the
emitted constraints with &, not ⊗. This can also be understood in terms of the array example of
Section 1: if an array is freed in one branch of a case, we require it to be freed (or freezed) in the
other branches too. Otherwise, the array’s state will be unknown to the type system after the case.

Implications. The introduction of constraints local to a definition (rule G-LetSig) corresponds
to emitting an implication constraint.

Unannotated let. However, the G-Let rule does not produce an implication constraint, as we do
not model let-generalisation [Vytiniotis et al. 2010].

The key property of the constraint-generation algorithm is that, if the generated constraint is
solvable, then we can indeed type the term in the qualified type system of Section 5. That is, these
rules are simply an implementation of our declarative qualified type system.

Lemma 6.4 (Soundness of constRaint geneRation). For all Qg , if Γ ⊢▶ e : 𝜏 { 𝐶 and Qg ⊢ 𝐶
then Qg ; Γ ⊢ e : 𝜏 .
6Allowing the full wanted-constraint syntax in assumptions is the subject of work by Bottu et al. [2017].
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Γ ⊢▶ e : 𝜏 { 𝐶 (Constraint generation)

G-VaR
Γ1 = x:1∀a.Q =◦𝜐

Γ1 + 𝜔 ·Γ2 ⊢▶ x : 𝜐 [𝜏/a] { Q[𝜏/a]

G-Abs
Γ, x:𝜋𝜏0 ⊢▶ e : 𝜏 { 𝐶

Γ ⊢▶ 𝜆x .e : 𝜏0 →𝜋 𝜏 { 𝐶

G-App
Γ1 ⊢▶ e1 : 𝜏2 →𝜋 𝜏 { 𝐶1

Γ2 ⊢▶ e2 : 𝜏2 { 𝐶2

Γ1 + 𝜋 ·Γ2 ⊢▶ e1 e2 : 𝜏 { 𝐶1 ⊗ 𝜋 ·𝐶2

G-PacK
Γ ⊢▶ e : 𝜏 [𝜐/a] { 𝐶

Γ ⊢▶ pack e : ∃a.𝜏 RQ { 𝐶 ⊗Q[𝜐/a]

G-UnpacK
Γ1 ⊢▶ e1 : ∃a.𝜏1 RQ1 { 𝐶1

a fresh
Γ2, x:1𝜏1 ⊢▶ e2 : 𝜏 { 𝐶2

Γ1 + Γ2 ⊢▶ unpack x = e1 in e2 : 𝜏 { 𝐶1 ⊗ 1·(Q1 =◦𝐶2)

G-Case
Γ ⊢▶ e : T 𝜎 { 𝐶
Ki : ∀a.𝜐i →𝜋 i

T a

Δ, xi :(𝜋 ·𝜋i)𝜐i [𝜎/a] ⊢▶ ei : 𝜏 { 𝐶i

𝜋 ·Γ + Δ ⊢▶ case𝜋 e of {K𝑖 x𝑖 → e𝑖 } : 𝜏 { 𝜋 ·𝐶 ⊗&𝐶i

G-Let
Γ1 ⊢▶ e1 : 𝜏1 { 𝐶1

Γ2, x:𝜋𝜏1 ⊢▶ e2 : 𝜏 { 𝐶2

𝜋 ·Γ1 + Γ2 ⊢▶ let𝜋 x = e1 in e2 : 𝜏 { 𝜋 ·𝐶1 ⊗𝐶2

G-LetSig
Γ1 ⊢▶ e1 : 𝜏1 { 𝐶1 a fresh
Γ2, x:𝜋∀a.Q =◦𝜏1 ⊢▶ e2 : 𝜏 { 𝐶2

𝜋 ·Γ1 + Γ2 ⊢▶ let𝜋 x : ∀a.Q =◦𝜏1 = e1 in e2 : 𝜏 { 𝐶2 ⊗ 𝜋 ·(Q =◦𝐶1)

Fig. 8. Constraint generation

6.3 Constraint solving
In this section, we build a constraint solver that proves that Qg ⊢ 𝐶 holds, as required by Lemma 6.4.
The constraint solver is represented by the following judgement:

U ; Li ⊢s 𝐶 { Lo

The judgement takes in two contexts: U , which holds all the unrestricted atomic constraint as-
sumptions and Li, which holds all the linear atomic constraint assumptions. The linear contexts
Li and Lo have been described as multisets (Section 5.2), but we treat them as ordered lists in the
more concrete setting here; we will see soon why this treatment is necessary.

Linearity requires treating constraints as consumable resources.This is what Lo is for: it contains
the hypotheses of Li which are not consumed when proving𝐶 . As suggested by the notation, it is
an output of the algorithm.

If the constraint solver finds a solution, then the output linear constraints must be a subset of
the input linear constraints, and the solution must indeed be entailed from the given assumptions.

Lemma 6.5 (ConstRaint solveR soundness). If U ; Li ⊢s 𝐶 { Lo, then:
(1) Lo ⊆ Li
(2) (U , Li) ⊢ 𝐶 ⊗(∅, Lo)
To handle simple wanted constraints, we will need a domain-specific atomic-constraint solver to

be the algorithmic counterpart of the abstract entailment relation of Section 5.2. The main solver
will appeal to this atomic-constraint solverwhen solving atomic constraints.The atomic-constraint
solver is represented by the following judgement:

U ; Li ⊢atom
s 𝜋 ·q { Lo
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U ; Li ⊢s 𝐶w { Lo (Constraint solving)

S-Atom
U ; Li ⊢atom

s 𝜋 ·q { Lo

U ; Li ⊢s 𝜋 ·q { Lo

S-Mult
U ; Li ⊢s 𝐶1 { L′o U ; L′o ⊢s 𝐶2 { Lo

U ; Li ⊢s 𝐶1 ⊗𝐶2 { Lo

S-ImplOne
U ∪ U0; Li ⊎ L0 ⊢s 𝐶 { Lo

Lo ⊆ Li

U ; Li ⊢s 1·((U0, L0) =◦𝐶) { Lo

S-Add
U ; Li ⊢s 𝐶1 { Lo U ; Li ⊢s 𝐶2 { Lo

U ; Li ⊢s 𝐶1 &𝐶2 { Lo

S-ImplMany
U ∪ U0; L0 ⊢s 𝐶 { ∅

U ; Li ⊢s 𝜔 ·((U0, L0) =◦𝐶) { Li

Fig. 9. Constraint solver

It has a similar structure to the main solver, but only deals with atomic constraints. Even though
the main solver is parameterised by this atomic-constraint solver, we will give an instantiation in
Section 6.3.2. We require the following property of the atomic-constraint solver:

PRopeRty 6.6 (Atomic-constRaint solveR soundness). If U ; Li ⊢atom
s 𝜋 ·q { Lo, then:

(1) Lo ⊆ Li
(2) (U , Li) ⊩ 𝜋 ·q ⊗(∅, Lo)

6.3.1 Constraint solver algorithm. Building on this atomic-constraint solver, we use a linear proof
search algorithm based on the recipe given by Cervesato et al. [2000]. Figure 9 presents the rules
of the constraint solver.

• The S-Mult rule proceeds by solving one side of a conjunction first, then passing the output
constraints to the other side. The unrestricted context is shared between both sides.

• The S-Add rule handles additive conjunction. The linear constraints are shared between the
branches (since additive conjunction is generated from case expressions, only one of them
is actually going to be executed). Both branches must consume exactly the same resources.

• The S-ImplOne rules handles linear implications. The unrestricted and linear components of
the assumption are unioned with their respective context when solving the conclusion. Im-
portantly (see Section 6.3.2), the linear assumptions are added to the front of the list.The side
condition that the output context is a subset of the input context ensures that the implication
fully consumes its assumption and does not leak it to the ambient context.

• The S-ImplMany rules handles unrestricted implication. The conclusion uses its own linear
assumption, but none of the other linear constraints. This is because, as per C-Impl, unre-
stricted implications can only use an unrestricted context.

6.3.2 An atomic-constraint solver. So far, the atomic-constraint domain has been an abstract pa-
rameter. In this section, though, we offer a concrete domain which supports our examples.

For the sake of our examples, we need very little: linear constraints can remain abstract. It is thus
sufficient for the entailment relation (Figure 10a) to prove q if and only if it is already assumed—
while respecting linearity.

The corresponding atomic-constraint solver (Figure 10b) is more interesting. It is deterministic:
in all circumstances, only one of the three rules can apply. This means that the algorithm does not
guess, thus never needs to backtrack. Avoiding guesses is a key property of ghc’s solver [Vytiniotis
et al. 2011, Section 6.4], one we must maintain if we are to be compatible with ghc.
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Q1 ⊩ Q2 (Entailment relation)

Q-Hyp

𝜔 ·Q ⊗ 𝜋 ·q ⊩ 𝜋 ·q

Q-PRod
Q1 ⊩ Q′

1 Q2 ⊩ Q′
2

Q1 ⊗Q2 ⊩ Q′
1 ⊗Q′

2

Q-Empty

𝜔 ·Q ⊩ 𝜀

(a) Entailment relation

U ; L ⊢atom
s 𝜋 ·q { Lo (Atomic-constraint solver)

Atom-Many
q ∈ U

U ; L ⊢atom
s 𝜔 ·q { L

Atom-OneL
q ∉ L2 q ∉ U

U ; L1, q, L2 ⊢atom
s 1·q { L1, L2

Atom-OneU
q ∈ U q ∉ L

U ; L ⊢atom
s 1·q { L

(b) Atomic-constraint solver

Fig. 10. A stripped-down constraint domain

Figure 10b is also where the fact that the L are lists comes into play. Indeed, rule Atom-OneL
takes care to use the most recent occurrence of q (remember that rule S-ImplOne adds the new
hypotheses on the front of the list). To understand why, consider the following example:

f = new 10 (𝜆arr → let fr :: RW n=◦()
fr = free arr

() = fr in Ur ())

In this example, the programmer meant for free to use the RW n constraint introduced locally in
the type of fr . Yet there are actually two RW n constraints: this local one and the one assumed
when entering the scope of new. The wrong choice among the constraints will lead the algorithm
to fail. Choosing the first q linear assumption guarantees we get the most local one.

Another interesting feature of the solver (Figure 10b) is that no rule solves a linear constraint if
it appears both in the unrestricted and the linear context. Consider the following (contrived) api:

class C

giveC :: (C⇒ Int) → Int useC :: C =◦ Int

giveC gives an unrestricted copy of C to some continuation, while useC uses C linearly. Now con-
sider a consumer of this api:

bad :: C =◦(Int, Int)
bad = (giveC useC, useC)

It is possible to give a type derivation to bad in the qualified type system of Section 5. In this
case, the constraint assignment is actually unambiguous: the first useC must use the unrestricted
C, while the second must use the linear C. This assignment, however, would require the constraint
solver to guess when solving the constraint from the first useC. Accordingly, in order to both avoid
backtracking and to keep type inference independent of the order terms appear in the program
text, bad is rejected. This introduces incompleteness with respect the entailment relation. We con-
jecture that this is the only source of incompleteness that we introduce beyond what is already in
ghc [Vytiniotis et al. 2011, Section 6].
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𝜎 F ∀a.𝜏 Type schemes
𝜏,𝜐 F ... | ∃a.𝜏 ⊗ 𝜐 Types
e F ... | pack (e1, e2) | unpack (x, y) = e1 in e2 Expressions

Γ ⊢ e : 𝜏 (Core language typing)
L-PacK

Γ1 ⊢ e1 : 𝜏1 [𝜐/a]
Γ2 ⊢ e2 : 𝜏2 [𝜐/a]

Γ1 + Γ2 ⊢ pack (e1, e2) : ∃a.𝜏2 ⊗ 𝜏1

L-UnpacK
Γ1 ⊢ e1 : ∃a.𝜏2 ⊗ 𝜏1 a fresh

Γ2, x:1𝜏1, y:1𝜏2 ⊢ e2 : 𝜏
Γ1 + Γ2 ⊢ unpack (x, y) = e1 in e2 : 𝜏

Fig. 11. Core calculus (subset)

7 DESUGARING
The semantics of our language is given by desugaring it into a simpler core language: a variant of
the 𝜆𝑞 calculus [Bernardy et al. 2017]. We define the core language’s type system here; its opera-
tional semantics is the same, mutatis mutandis, as that of Linear Haskell.

7.1 The core calculus
The core calculus is a variant of the type system defined in Section 5, but without constraints. That
is, the evidence for constraints is passed explicitly in this core calculus. Following 𝜆𝑞 , we assume
the existence of the following data types:

• 𝜏1 ⊗ 𝜏2 with sole constructor (,) : ∀a b.a →1 b →1 a ⊗ b. We will write (e1, e2) for (,) e1 e2.
• 1 with sole constructor () : 1.
• Ur𝜏 with sole constructor Ur : ∀a.a →𝜔 Ur a

Figure 11 highlights the differences from the qualified system:
• Type schemes 𝜎 do not support qualified types.
• Existentially quantified types (∃a.𝜏 RQ) are now represented as an (existentially quantified,

linear) pair of values (∃a.𝜏2 ⊗ 𝜏1). Accordingly, pack and unpack operate on pairs.
The differences between our core calculus and 𝜆𝑞 are as follows:

• We do not support multiplicity polymorphism.
• On the other hand, we do include type polymorphism.
• Polymorphism is implicit rather than explicit. This is not an essential difference, but it sim-

plifies the presentation. We could, for example, include more details in the terms in order
to make type-checking more obvious; this amounts essentially to an encoding of typing
derivations in the terms7.

• We have existential types. These can be realised in regular Haskell as a family of datatypes.
Using Lemma 6.4 together with Lemma 6.5 we know that if Γ ⊢▶ e : 𝜏 { 𝐶 and U ; L ⊢s 𝐶 { ∅,

then (U , L); Γ ⊢ e : 𝜏 . It only remains to desugar derivations of Q; Γ ⊢ e : 𝜏 into the core calculus.

7.2 From qualified to core
7.2.1 Evidence. In order to desugar derivations of the qualified system to the core calculus, we
pass evidence explicitly8. To do so, we require some more material from constraints. Namely, we
assume a type JqKev for each atomic constraint q, defined in Figure 12a.The J_Kev operation extends
7See, for example, Weirich et al. [2017] and their comparison between an implicit core language D and an explicit one DC.
8This technique is also often called dictionary-passing style [Hall et al. 1996] because, in the case of type classes, evidences
are dictionaries, and because type classes were the original form of constraints in Haskell.
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
J1·qKev = JqKevJ𝜔 ·qKev = Ur (JqKev)J𝜀Kev = 1JQ1 ⊗Q2Kev = JQ1Kev ⊗ JQ2Kev

(a) Evidence passing



JQ; Γ ⊢ x : 𝜐 [𝜏/a]Kz = x zJQ1 ⊗Q2; Γ1 + Γ2 ⊢ unpack x = e1 in e2 : 𝜏Kz =
case1 z of { (z1, z2) →

unpack (z′, x) = JQ1; Γ1 ⊢ e1 : ∃ a.𝜏1 RQKz1 in
let1 z2 ′ = (z2, z′) inJQ2 ⊗Q; Γ2, x :1 𝜏1 ⊢ e2 : 𝜏Kz2′ }JQ; Γ ⊢ e : 𝜏Kz = -- rule E-Sub

let1 z′ = JQ ⊩ Q1Kev z in JQ1; Γ ⊢ e : 𝜏Kz′
...

(b) Desugaring (subset)

Fig. 12. Evidence passing and desugaring

to simple constraints as JQKev. Furthermore, we require that for everyQ1 andQ2 such thatQ1 ⊩ Q2,
there is a (linear) function JQ1 ⊩ Q2Kev : JQ1Kev →1 JQ2Kev.

Let us now define a family of functions J_K to translate the type schemes, types, contexts, and
typing derivations of the qualified system into the types, type schemes, contexts, and terms of the
core calculus.

7.2.2 Translating types. Type schemes 𝜎 are translated by turning the implicit argument Q into
an explicit one of type JQKev. Translating types 𝜏 and contexts Γ proceeds as expected.{ J∀a.Q =◦𝜏K = ∀a.JQKev →1 J𝜏K{ J𝜏1 →𝜋 𝜏2K = J𝜏1K →𝜋 J𝜏2KJ∃a.𝜏 RQK = ∃a.J𝜏K ⊗ JQKev

{ J•K = •JΓ, x:𝜋𝜏K = JΓK, x:𝜋 J𝜏K
7.2.3 Translating terms. Given a derivation Q; Γ ⊢ e : 𝜏 , we can build an expression JQ; Γ ⊢ e : 𝜏Kz ,
such that JΓK, z:1JQKev ⊢ JQ; Γ ⊢ e : 𝜏Kz : J𝜏K (for some fresh variable z). Even thoughwe abbreviate
the derivation as only its concluding judgement, the translation is defined recursively on the whole
typing derivation: in particular, we have access to typing rule premises in the body of the definition.
We present some of the interesting cases in Figure 12b.

The cases correspond to the E-VaR, E-UnpacK9, and E-Sub rules, respectively. Variables are
stored with qualified types in the environment, so they get translated to functions that take the ev-
idence as argument. Accordingly, the evidence is inserted by passing z as an argument. Handling
unpack requires splitting the context into two: e1 is desugared as a pair, and the evidence it con-
tains is passed to e2. Finally, subsumption summons the function corresponding to the entailment
relation Q ⊩ Q1 and applies it to z : JQKev then proceeds to desugar e with the resulting evidence
for Q1. Crucially, since J_Kz is defined on derivations, we can access the premises used in the rule.
Namely, Q1 is available in this last case from the E-Sub rule’s premise.

It is straightforward by induction, to verify that desugaring is correct:

TheoRem 7.1 (DesugaRing). If Q; Γ ⊢ e : 𝜏 , then JΓK, z:1JQKev ⊢ JQ; Γ ⊢ e : 𝜏Kz : J𝜏K, for any
fresh variable z.
9The attentive reader may note that the case for unpack extracts out Q1 and Q2 from the provided simple constraint. Given
that simple constraints Q have no internal ordering and allow duplicates (in the non-linear component), this splitting is
not well defined. To fix this, an implementation would have to name individual components of Q, and then the typing
derivation can indicate which constraints go with which sub-expression. Happily, ghc already names its constraints, and
so this approach fits easily in the implementation. We could also augment our formalism here with these details, but they
add clutter with little insight.
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Thanks to the desugaring machinery, the semantics of a language with linear constraints can be
understood in terms of a simple core language with linear types, such as 𝜆𝑞 , or indeed, ghc Core.

8 INTEGRATING INTO GHC
One of the guiding principles behind our design was ease of integration with modern Haskell. In
this section we describe some of the particulars of adding linear constraints to ghc.

8.1 Implementation
We have written a prototype implementation of linear constraints on top of ghc 9.1, a version
that already ships with the LinearTypes extension. Function arrows (→) and context arrows (⇒)
share the same internal representation in the typechecker, differentiated only by a boolean flag.
Thus, the LinearTypes implementation effort has already laid down the bureaucratic groundwork
of annotating these arrows with multiplicity information.

The key changes affect constraint generation and constraint solving. Constraints are now anno-
tated with a multiplicity, according to the context from which they arise. With LinearTypes, ghc
already scales the usage of term variables. We simply modified the scaling function to capture all
the generated constraints and re-emit a scaled version of them, which is a fairly local change.

The constraint solver maintains a set of given constraints (the inert set in ghc jargon), which
corresponds to the U and L contexts in our solver judgements in Section 6.3. When the solver goes
under an implication, the assumptions of the implication are added to set of givens. When a new
given is added, we record the level of the implication (how many implications deep the constraint
arises from) along with the constraint. So that in case there are multiple matching givens, the
constraint solver selects the innermost one (in Section 6.3 we use an ordered list for this purpose).

As constraint solving proceeds, the compiler pipeline constructs a term in a typed language
known as ghc Core [Sulzmann et al. 2007]. In Core, type class constraints are turned into explicit
evidence (see Section 7). Thanks to being fully annotated, Core has decidable typechecking which
is useful in debugging modifications to the compiler. Thus, the Core typechecker verifies that the
desugaring procedure produced a linearity-respecting program before code generation occurs.

8.2 Interaction with other features
Since constraints play an important role in ghc’s type system, we must pay close attention to the
interaction of linearity with other language features related to constraints. Of these, we point out
two that require some extra care.

8.2.1 Superclasses. Haskell’s type classes can have superclasses, which place constraints on all of
the instances of that class. For example, the Ord class is defined as
class Eq a⇒Ord a where ...

which means that every ordered type must also support equality. Such superclass declarations
extend the entailment relation: if we know that a type is ordered, we also know that it supports
equality. This is troublesome if we have a linear occurrence of Ord a, because then using this
entailment, we could conclude that a linear constraint (Ord a) implies an unrestricted constraint
(Eq a), which violates Lemma 5.5.

But even linear superclass constraints cause trouble. Consider a version of Ord a that has Eq a
as a linear superclass.
class Eq a=◦Ord a where ...

When given a linear Ord a, should we keep it as Ord a, or rewrite to Eq a using the entailment?
Short of backtracking, the constraint solver needs to make a guess, which ghc never does.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2022.



1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1:22 Bernardy, Eisenberg, Kiss, Spiwack, Wu

To address both of these issues at once, we make the following rule: the superclasses of a linear
constraint are ignored.

8.2.2 Equality constraints. In Section 6 we argued that type inference and constraint inference can
be performed independently. However, this is not the case for ghc’s constraint domain, because
it supports equality constraints, which allows unification problems to be deferred, and potentially
be solvable only after solving other constraints first.

To reconcile this with our presentation, we need to ensure that unrestricted constraint inference
and linear constraint inference can be performed independently.That is, solving a linear constraint
should never be required for solving an unrestricted constraint. This is ensured by Lemma 5.5.

They key is to represent unification problems as unrestricted equality constraints, so a given
linear equality constraint cannot be used during type inference. This way, linear equalities require
no special treatment, and are harmless.

8.3 Inferring pack and unpack

Recent work [Eisenberg et al. 2021] describes an algorithm (call it edwl, after the authors’ names)
that can infer the location of packs and unpacks10 in a user’s program. In Section 9.2 of that paper,
the authors extend their system to include class constraints, much as we allow our existential
packages to carry linear constraints.

Accordingly, edwl would work well for us here. The edwl algorithm is only a small change
on the way some types are treated during bidirectional type-checking. Though the presentation
of linear constraints is not written using a bidirectional algorithm, our implementation in ghc
is indeed bidirectional (as ghc’s existing type inference algorithm is bidirectional, as described
by Jones et al. [2007] and Eisenberg et al. [2016]) and produces constraints much like we have
presented here, formally. None of this would change in adapting edwl. Indeed, it would seem that
the two extensions are orthogonal in implementation, though avoiding the need for explicit pack
and unpack would make linear constraints easier to use.

9 RELATEDWORK
OutsideIn. Our aim is to integrate the present work in ghc, and accordingly the qualified type

system in Section 5 and the constraint inference algorithm in Section 6 follow a similar presenta-
tion to that of OutsideIn [Vytiniotis et al. 2011], ghc’s constraint solver algorithm. Even though
our presentation is self-contained, we outline some of the differences from that work.

The solver judgement in OutsideIn takes the following form:

Q ; 𝑄given ; 𝛼 tch
solv↦→ 𝐶wanted { 𝑄residual ; 𝜃

The main differences from our solver judgement in Section 6.3 are:
• OutsideIn’s judgement includes top-level axioms schemes separately (Q), which we have

omitted for the sake of brevity and are instead included in 𝑄given.
• We present the given constraints (𝑄given in OutsideIn) as two separate constraint sets U and
L, standing for the unrestricted and linear parts respectively.

• In addition to constraint inference, OutsideIn performs type inference, requiring additional
bookkeeping in the solver judgment. The solver takes as input a set of touchable variables
𝛼𝑡𝑐ℎ which record the type variables that can be unified at any given time, and produces a
type substitution 𝜃 as an output. As discussed in Section 6, we do not perform type inference,
only constraint inference. Therefore, our solver need not return a type assignment.

10Actually, Eisenberg et al. [2021] use an open construct instead of unpack to access the contents of an existential package,
but that distinction does not affect our usage of existentials with linear constraints.
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• Both OutsideIn and our solver output a set of constraints,𝑄residual and Lo respectively. How-
ever, the meaning of these contexts is different. OutsideIn’s residual constraints 𝑄residual

correspond to the part of𝐶wanted that could not be solved from the assumptions. These resid-
uals are then quantified over in the generalisation step of the inference algorithm. We omit
these residuals, which means that our algorithm cannot infer qualified types. Our output
constraints Lo instead correspond to the part of the linear givens Li that were not used in
the solution for 𝐶w .

• Finally, while OutsideIn has a single kind of conjunction, our constraint language requires
two:Q1 ⊗Q2 andQ1 &Q2.This shows upwhen generating constraints for case expressions in
the rule G-Case rule. OutsideIn accumulates constraints across branches (taking the union of
each branch), whereas we need tomake sure that each branch of a case-expression consumes
the same constraints.

Ownership. Ownership and borrowing are the key features of Rust’smemorymanagementmodel.
In Section 4 we show how linear constraints can be used to implement such an ownership model
as a library. Although linear constraints do not have the convenience of Rust’s syntax, we expect
that they will support a greater variety of abstractions.

Clean is another language with built-in ownership typing. Like Haskell it is a lazy language. Mu-
tation is performed by returning a new reference, like in Linear Haskell without linear constraints.

Languages with capabilities. BothMezzo [Pottier and Protzenko 2013] and ats [Zhu and Xi 2005]
served as inspiration for the design of linear constraints. Of the two, Mezzo is more specialised,
being entirely built around its system of capabilities. Ats is the closest to our system because it
appeals explicitly to linear logic, and because the capabilities (known as stateful views) are not tied
to a particular use case. However, ats does not have full inference of capabilities.

Other than that, the two systems have a lot of similarities. They have a finer-grained capability
system than is expressible in Rust (or our encoding of it in Section 4) which makes it possible to
change the type of a reference cell upon write (though linear constraints could be used to imple-
ment such type-changing references too). They also eschew scoped borrowing in favour of more
traditional read and write capabilities.

Linear constraints are more general than either Mezzo or ats, while maintaining a considerably
simpler inference algorithm, and at the same time supporting a richer set of constraints (such
as gadts). This simplicity is a benefit of abstracting over the simple-constraint domain. In fact, it
should be possible to seeMezzo or ats as particular instantiations of the simple-constraint domain,
with linear constraints providing the general inference mechanism.

Linearly typed languages. Affe [Radanne et al. 2020] is a linearly typed ml-style core language
withmutable references and arrays, augmentedwith a notion of borrowing. It has dedicated syntax
for the scope of borrows. In contrast, we represent scopes as functions. Affe is presented as a fully
integrated solution, while linear constraints is a small layer on top of Linear Haskell.

Logic programming. There are a lot of commonalities between ghc’s constraint and logic pro-
grams. Traditional type classes can be seen as Horn clause programs, much like Prolog programs.
ghc puts further restrictionss in order to avoid backtracking for speed and predictability.

The recent addition of quantified constraints [Bottu et al. 2017] extends type class resolution
to Hereditary Harrop [Miller et al. 1987] programs. A generalisation of the Hereditary Harrop
fragment to linear logic, described by Hodas and Miller [1994], is the foundation of the Lolli lan-
guage [Hodas 1994].The authors also coin the notion of uniform proof. A fragment where uniform
proofs are complete supports goal-oriented proof search, like Prolog does.
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Completeness of uniform proofs is equivalent to Lemma 6.1, which, in turn, is used in the proof
of the soundness lemma 6.4. This seems to indicate that goal-oriented search is baked into the
definition of OutsideIn. An immediate consequence of this observation, however, is that the frag-
ment of linear logic described by Hodas and Miller [1994] (and for which Cervesato et al. [2000]
provides a refined search strategy) contains the Hereditary Harrop fragment of intuitionistic logic
guarantees that quantified constraints do not break our proofs.

10 CONCLUSION
We showed how a simple linear type system like that of Linear Haskell can be extended with
an inference mechanism which lets the compiler manage some of the additional complexity of
linear types instead of the programmer. Linear constraints narrow the gap between linearly typed
languages and dedicated linear-like typing disciplines such as Rust’s, Mezzo’s, or ats’s.
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a, b F . . . Type variables
x, y F . . . Expression variables
K F . . . Data constructors
𝜎 F ∀a.𝜏 Type schemes
𝜏,𝜐 F a | ∃a.𝜏 ⊗ 𝜐 | 𝜏1 →𝜋 𝜏2 | T 𝜏 Types
Γ,Δ F • | Γ, x:𝜋𝜎 Contexts
e F x | K | 𝜆x .e | e1 e2 | pack (e1, e2) Expressions

| unpack (y, x) = e1 in e2 | case𝜋 e of {K𝑖 x𝑖 → e𝑖 }
| let𝜋 x = e1 in e2 | let𝜋 x : 𝜎 = e1 in e2

Fig. 13. Grammar of the core calculus

Γ ⊢ e : 𝜏 (Core language typing)

L-VaR
x:1∀a.𝜐 ∈ Γ

Γ ⊢ x : 𝜐 [𝜏/a]

L-Abs
Γ, x:𝜋𝜏1 ⊢ e : 𝜏2

Γ ⊢ 𝜆x .e : 𝜏1 →𝜋 𝜏2

L-App
Γ1 ⊢ e1 : 𝜏1 →𝜋 𝜏

Γ2 ⊢ e1 : 𝜏1
Γ1 + 𝜋 ·Γ2 ⊢ e1 e2 : 𝜏

L-PacK
Γ1 ⊢ e1 : 𝜏1 [𝜐/a]
Γ2 ⊢ e2 : 𝜏2 [𝜐/a]

Γ1 + Γ2 ⊢ pack (e1, e2) : ∃a.𝜏2 ⊗ 𝜏1

L-UnpacK
Γ1 ⊢ e1 : ∃a.𝜏2 ⊗ 𝜏1 a fresh

Γ2, x:1𝜏1, y:1𝜏2 ⊢ e2 : 𝜏
Γ1 + Γ2 ⊢ unpack (x, y) = e1 in e2 : 𝜏

L-Let
Γ1 ⊢ e1 : 𝜏1 Γ2, x:𝜋𝜎 ⊢ e2 : 𝜏

𝜋 ·Γ1 + Γ2 ⊢ let𝜋 x : 𝜎 = e1 in e2 : 𝜏

L-Case
Γ1 ⊢ e : T 𝜏

Ki : ∀a.𝜐i →𝜋 i
T a

Γ2, xi :(𝜋 ·𝜋i)𝜐i [𝜏/a] ⊢ ei : 𝜏
𝜋 ·Γ1 + Γ2 ⊢ case𝜋 e of {K𝑖 x𝑖 → e𝑖 } : 𝜏

Fig. 14. Core calculus type system

A FULL DESCRIPTIONS
In this appendix, we give, for reference, complete descriptions of the type systems, functions, etc.
that we have abbreviated in the main body of the article.

A.1 Core calculus
This is the complete version of the core calculus described in Section 7.1.The full grammar is given
by Figure 13 and the type system by Figure 14.

A.2 Desugaring
The complete definition of the desugaring function from Section 7 can be found in Figure 15.

For the sake of concision, we allow ourselves to write nested patterns in case expressions of the
core language. Desugaring nested patterns into atomic case expression is routine.

In the complete description, we use a device which was omitted in the main body of the article.
Namely, we’ll need a way to turn every J𝜔 ·QKev into an Ur (JQKev). For any e : J𝜔 ·QKev, we
shall write eQ : Ur (J𝜔 ·QKev). As a shorthand, particularly useful in nested patterns, we will write
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case𝜋 e of {xQ → e′} for case𝜋 eQ of {Ur x → e′}.
e𝜀 = case1 e of {() → Ur ()}
e1·q = e

e𝜔 ·q = case1 e of {Ur x → Ur (Ur x)}
eQ1 ⊗Q2

= case1 e of {(xQ1
, y

Q2
) → Ur (x, y)}

We will omit the Q in eQ and write e when it can be easily inferred from the context.

B PROOFS
B.5 Lemmas on the qualified type system

PRoof of Lemma 5.4. Let us prove separately the cases 𝜋 = 1 and 𝜋 = 𝜔 .
• When 𝜋 = 1, then 𝜋 ·Q = Q for all Q, hence Q1 ⊩ Q2 implies 𝜋 ·Q1 ⊩ 𝜋 ·Q2.
• For the case 𝜋 = 𝜔 , let us consider a few properties. First note that, for any Q, 𝜔 ·Q =
𝜔 ·Q ⊗𝜔 ·Q. From which it follows, using the laws of Definition 5.3, that 𝜔 ·Q ⊩ Q1 ⊗Q2 if
and only if 𝜔 ·Q ⊩ Q1 and 𝜔 ·Q ⊩ Q2.
This means that to verify that 𝜔 ·Q1 ⊩ 𝜔 ·Q2, it is equivalent to prove that 𝜔 ·Q1 ⊩ 𝜔 ·q2 for
each q2 ∈ U (letting𝜔 ·Q2 = (U , ∅)). In turn, by Definition 5.3 and observing that𝜔 ·(𝜔 ·Q1) =
Q1, this is equivalent to 𝜔 ·Q1 ⊩ 1·q2.
This follows from the fact that Q1 ⊩ Q2 implies 𝜔 ·Q1 ⊩ Q2 (Definition 5.3) and the property,
shown above, that 𝜔 ·Q1 ⊩ Q2 ⊗Q′

2 if and only if 𝜔 ·Q1 ⊩ Q2 and 𝜔 ·Q1 ⊩ Q′
2.

□

PRoof of Lemma 5.5. Let us prove separately the cases 𝜋 = 1 and 𝜋 = 𝜔 .
• When 𝜋 = 1, then 𝜋 ·Q = Q for all Q, in particular Q1 ⊩ 1·Q2 implies that Q1 = 1·Q1 with
Q1 ⊩ Q2.

• When 𝜋 = 𝜔 , then let us first remark, letting 𝜔 ·Q2 = (U , ∅) that, by a straightforward
induction on the cardinality of U it is sufficient to prove that the result holds for atomic
constraints.
That is, we need to prove that if Q1 ⊩ 𝜔 ·q2 then there exists Q′ such that Q1 = 𝜔 ·Q′ and
Q′ ⊩ 𝜌 ·q2 (for all 𝜌).
This result, in turns, holds by Definition 5.3.

□

Lemma B.1. The following equality holds 𝜋 ·(𝜌 ·Q) = (𝜋 ·𝜌)·Q

PRoof. Immediate by case analysis of 𝜋 and 𝜌 . □

B.6 Lemmas on constraint inference
PRoof of Lemma 6.1. The cases Q ⊢ 𝐶1 &𝐶2 and Q ⊢ 𝜋 ·(Q2 =◦𝐶) are immediate, since there is

only one rule (C-With and C-Impl respectively) which can have them as their conclusion.
For Q ⊢ 𝐶1 ⊗𝐶2 we have two cases:
• either it is the conclusion of a C-TensoR rule, and the result is immediate.
• or it is the result of a C-Dom rule, in which case we have 𝐶1 = Q1, 𝐶2 = Q2, and the result

follows from Definition 5.3.
□

PRoof of Lemma 6.2. By induction on the syntax of 𝐶
• If 𝐶 = Q′, then the result follows from Lemma 5.4
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JQ; Γ ⊢ x : 𝜐 [𝜏 / a]Kz =
x zJQ; Γ ⊢ 𝜆x .e : 𝜏1 →𝜋 𝜏2Kz =

𝜆x .JQ; Γ, x :𝜋 𝜏1 ⊢ e : 𝜏2KzJQ1 ⊗Q2; Γ1 + Γ2 ⊢ e1 e2 : 𝜏Kz =
case1 z of { (z1, z2) →

(JQ1; Γ1 ⊢ e1 : 𝜏1 →1 𝜏Kz1 ) (JQ2; Γ2 ⊢ e2 : 𝜏1Kz2 ) }JQ1 ⊗𝜔 · Q2; Γ1 + 𝜔 · Γ2 ⊢ e1 e2 : 𝜏Kz =
case1 z of { (z1, z2) →

(JQ1; Γ1 ⊢ e1 : 𝜏1 →𝜔 𝜏Kz1 ) (JQ2; Γ2 ⊢ e2 : 𝜏1Kz2 ) }JQ ⊗Q1 [𝜐/a]; Γ ⊢ pack e : ∃ a.𝜏 RQ1Kz =
case1 z of { (z′, z′′) →

pack (z′′, JQ; Γ ⊢ e : 𝜏 [𝜐/a]Kz′) }JQ1 ⊗Q2; Γ1 + Γ2 ⊢ unpack x = e1 in e2 : 𝜏Kz =
case1 z of { (z1, z2) →

unpack (z′, x) = JQ1; Γ1 ⊢ e1 : ∃ a.𝜏1 RQKz1 in
let1 z2 ′ = (z2, z′) inJQ2 ⊗Q; Γ2, x :1 𝜏1 ⊢ e2 : 𝜏Kz2′ }JQ1 ⊗Q2; Γ1 + Γ2 ⊢ let1 x = e1 in e2 : 𝜏Kz =

case1 z of { (z1, z2) →
let1 x : JQKev →1 𝜏1 = JQ1 ⊗Q; Γ1 ⊢ e1 : 𝜏1Kz1
in JQ2; Γ2, x :1 𝜏1 ⊢ e2 : 𝜏Kz2 }J𝜔 · Q1 ⊗Q2;𝜔 · Γ1 + Γ2 ⊢ let𝜔 x = e1 in e2 : 𝜏Kz =

case1 z of { (z1, z2) →
let𝜔 x : JQKev →1 𝜏1 = JQ1 ⊗Q; Γ1 ⊢ e1 : 𝜏1Kz1 inJQ2; Γ2, x :𝜔 𝜏1 ⊢ e2 : 𝜏Kz2 }JQ1 ⊗Q2; Γ1 + Γ2 ⊢ let1 x : ∀ a.Q =◦𝜏1 = e1 in e2 : 𝜏Kz =

case1 z of { (z1, z2) →
let1 x : ∀ a.JQKev →1 𝜏1 = JQ1 ⊗Q; Γ1 ⊢ e1 : 𝜏1Kz1 inJQ2; Γ2, x :1 ∀ a.Q =◦𝜏1 ⊢ e2 : 𝜏Kz2 }J𝜔 · Q1 ⊗Q2;𝜔 · Γ1 + Γ2 ⊢ let𝜔 x : ∀ a.Q =◦𝜏1 = e1 in e2 : 𝜏Kz =

case1 z of { (z1, z2) →
let𝜔 x : ∀ a.JQKev →1 𝜏1 = JQ1 ⊗Q; Γ1 ⊢ e1 : 𝜏1Kz1 inJQ2; Γ2, x :𝜔 𝜏1 ⊢ e2 : 𝜏Kz2 }J𝜔 · Q1 ⊗Q2;𝜔 · Γ1 + Γ2 ⊢ case1 e of {K𝑖 x𝑖 → e𝑖 } : 𝜏Kz =

case1 z of { (z1, z2) →
case1 (JQ1; Γ1 ⊢ e : T 𝜏Kz1 ) of

{K xi → JQ2; Γ2, xi :(𝜋 ·𝜋i) 𝜐i [𝜏/a] ⊢ ei : 𝜏Kz2 } }JQ1 ⊗Q2; Γ1 + Γ2 ⊢ case𝜔 e of {K𝑖 x𝑖 → e𝑖 } : 𝜏Kz =
case1 z of { (z1, z2) →

case𝜔 (JQ1; Γ1 ⊢ e : T 𝜏Kz1 ) of
{K xi → JQ2; Γ2, xi :(𝜋 ·𝜋i) 𝜐i [𝜏/a] ⊢ ei : 𝜏Kz2 } }

Fig. 15. Desugaring
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• If 𝐶 = 𝐶1 ⊗𝐶2, then we can prove the result like we proved the corresponding case in
Lemma 5.4, using Lemma 6.1.

• If 𝐶 = 𝐶1 &𝐶2, then we the case where 𝜋 = 1 is immediate, so we can assume without
loss of generality that 𝜋 = 𝜔 , and, therefore, that 𝜋 ·𝐶 = 𝜋 ·𝐶1 ⊗ 𝜋 ·𝐶2. By Lemma 6.1, we
have that Q ⊢ 𝐶1 and Q ⊢ 𝐶2; hence, by induction, 𝜔 ·Q ⊢ 𝜔 ·𝐶1 and 𝜔 ·Q ⊢ 𝜔 ·𝐶1. Then, by
definition of the entailment relation, we have 𝜔 ·Q ⊗𝜔 ·Q ⊢ 𝜔 ·𝐶1 ⊗𝜔 ·𝐶2, which concludes,
since 𝜔 ·Q = 𝜔 ·Q ⊗𝜔 ·Q.

• If 𝐶 = 𝜌 ·(Q1 =◦𝐶 ′), then by Lemma 6.1, there is a Q′ such that Q = 𝜋 ·Q′ and Q′ ⊗Q1 ⊢ 𝐶 ′.
Applying rule C-Impl with 𝜋 ·𝜌 , we get (𝜋 ·𝜌)·Q′ ⊢ (𝜋 ·𝜌)·(Q1 =◦𝐶 ′).
In other words: 𝜋 ·Q ⊢ 𝜋 ·(𝜌 ·(Q =◦𝐶)) as expected.

□

PRoof of Lemma 6.3. By induction on the syntax of 𝐶
• If 𝐶 = Q′, then the result follows from Lemma 5.5
• If 𝐶 = 𝐶1 ⊗𝐶2, then we can prove the result like we proved the corresponding case in

Lemma 5.5 using Lemma 6.1.
• If 𝐶 = 𝐶1 &𝐶2, then we the case where 𝜋 = 1 is immediate, so we can assume without

loss of generality that 𝜋 = 𝜔 , and, therefore, that 𝜋 ·𝐶 = 𝜋 ·𝐶1 ⊗ 𝜋 ·𝐶2. By Lemma 6.1, there
exist Q1 and Q2 such that Q1 ⊢ 𝜔 ·𝐶1, Q2 ⊢ 𝜔 ·𝐶2 and Q = Q1 ⊗Q2. By induction hypothesis,
we get Q1 = 𝜔 ·Q′

1 and Q2 = 𝜔 ·Q′
2 such that Q′

1 ⊢ 𝐶1 and Q′
2 ⊢ 𝐶2. From which it follows

that 𝜔 ·Q′
1 ⊗𝜔 ·Q′

2 ⊢ 𝐶1 and 𝜔 ·Q′
1 ⊗𝜔 ·Q′

2 ⊢ 𝐶1 (by Lemma B.2) and, finally, Q = 𝜔 ·Q (by
Lemma B.3) and Q ⊢ 𝐶1 &𝐶2.

• If𝐶 = 𝜌 ·(Q1 =◦𝐶 ′), then𝜋 ·𝐶 = (𝜋 ·𝜌)·(Q1 =◦𝐶 ′).The result follows immediately by Lemma 6.1.
□

PRoof of Lemma 6.4. By induction on Γ ⊢▶ e : 𝜏 { 𝐶

G-VaR We have
• Γ1 = x:1∀a.Q =◦𝜐
• Γ1 + 𝜔 ·Γ2 ⊢▶ x : 𝜐 [𝜏/a] { Q[𝜏/a]
• Qg ⊢ Q[𝜏/a]
Therefore, by rules E-VaR and E-Sub, it follows immediately that Qg ; Γ1 + 𝜔 ·Γ2 ⊢ x : 𝜐 [𝜏/a]

G-Abs We have
• Γ ⊢▶ 𝜆x .e : 𝜏0 →𝜋 𝜏 { 𝐶
• Qg ⊢ 𝐶
• Γ, x:𝜋𝜏0 ⊢▶ e : 𝜏 { 𝐶
By induction hypothesis we have
• Qg ; Γ, x:𝜋𝜏0 ⊢ e : 𝜏
From which follows that Qg ; Γ ⊢ 𝜆x .e : 𝜏0 →𝜋 𝜏 .

G-Let We have
• 𝜋 ·Γ1 + Γ2 ⊢▶ let𝜋 x = e1 in e2 : 𝜏 { 𝜋 ·𝐶1 ⊗𝐶2

• Qg ⊢ 𝜋 ·𝐶1 ⊗𝐶2

• Γ2, x:𝜋𝜏1 ⊢▶ e2 : 𝜏 { 𝐶2

• Γ1 ⊢▶ e1 : 𝜏1 { 𝐶1

By Lemmas 6.1 and 6.3, there exist Q1 and Q2 such that
• Q1 ⊢ 𝐶1

• Q2 ⊢ 𝐶2

• Qg = 𝜋 ·Q1 ⊗Q2

By induction hypothesis we have

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2022.



1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

1:30 Bernardy, Eisenberg, Kiss, Spiwack, Wu

• Q1; Γ1 ⊢ e1 : 𝜏1
• Q2; Γ2, x:𝜋𝜏1 ⊢ e1 : 𝜏1
From which follows that Qg ;𝜋 ·Γ1 + Γ2 ⊢ let𝜋 x = e1 in e2 : 𝜏 .

G-LetSig We have
• 𝜋 ·Γ1 + Γ2 ⊢▶ let𝜋 x : ∀a.Q =◦𝜏1 = e1 in e2 : 𝜏 { 𝐶2 ⊗ 𝜋 ·(Q =◦𝐶1)
• Qg ⊢ 𝐶2 ⊗ 𝜋 ·(Q =◦𝐶1)
• Γ1 ⊢▶ e1 : 𝜏1 { 𝐶1

• Γ2, x:𝜋∀a.Q =◦𝜏1 ⊢▶ e2 : 𝜏 { 𝐶2

By Lemmas 6.1 and 6.3, there exist Q1, Q2 such that
• Q2 ⊢ 𝐶2

• Q1 ⊗Q ⊢ 𝐶
• Qg = 𝜋 ·Q1 ⊗Q2

By induction hypothesis
• Q1 ⊗Q; Γ1 ⊢ e1 : 𝜏1
• Q2; Γ2, x:𝜋∀a.Q =◦𝜏1 ⊢ e2 : 𝜏
Hence Qg ;𝜋 ·Γ1 + Γ2 ⊢ let𝜋 x : ∀a.Q =◦𝜏1 = e1 in e2 : 𝜏

G-App We have
• Γ1 + 𝜋 ·Γ2 ⊢▶ e1 e2 : 𝜏 { 𝐶1 ⊗ 𝜋 ·𝐶2

• Qg ⊢ 𝐶1 ⊗ 𝜋 ·𝐶2

• Γ1 ⊢▶ e1 : 𝜏2 →𝜋 𝜏 { 𝐶1

• Γ2 ⊢▶ e2 : 𝜏2 { 𝐶2

By Lemmas 6.1 and 6.3, there exist Q1, Q2 such that
• Q1 ⊢ 𝐶1

• Q2 ⊢ 𝐶2

• Qg = Q1 ⊗ 𝜋 ·Q2

By induction hypothesis
• Q1; Γ1 ⊢ e1 : 𝜏2 →𝜋 𝜏
• Q2; Γ2 ⊢ e2 : 𝜏2
Hence Qg ; Γ1 + 𝜋 ·Γ2 ⊢ e1 e2 : 𝜏 .

G-PacK We have
• Γ ⊢▶ pack e : ∃a.𝜏 RQ { 𝐶 ⊗Q[𝜐/a]
• Qg ⊢ 𝐶 ⊗Q[𝜐/a]
• Γ ⊢▶ e : 𝜏 [𝜐/a] { 𝐶
By Lemma 6.1, there exist Q1, Q2 such that
• Q1 ⊢ 𝐶
• Q2 ⊢ Q[𝜐/a]
• Qg = Q1 ⊗Q2

By induction hypothesis
• Q1; Γ ⊢ e : 𝜏 [𝜐/a]
So we haveQ1 ⊗Q[𝜐/a]; Γ ⊢ pack e : ∃a.𝜏 RQ. By rule E-Sub, we concludeQg ;𝜔 ·Γ ⊢ pack e :
∃a.𝜏 RQ.

G-UnpacK We have
• Γ1 + Γ2 ⊢▶ unpack x = e1 in e2 : 𝜏 { 𝐶1 ⊗ 1·(Q′ =◦𝐶2)
• Qg ⊢ 𝐶1 ⊗ 1·(Q′ =◦𝐶2)
• Γ1 ⊢▶ e1 : ∃a.𝜏1 RQ′ { 𝐶1

• Γ2, x:𝜋𝜏1 ⊢▶ e2 : 𝜏 { 𝐶2

By Lemma 6.1, there exist Q1, Q2 such that
• Q1 ⊢ 𝐶1
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• Q2 ⊗Q′ ⊢ 𝐶2

• Qg = Q1 ⊗Q2

By induction hypothesis
• Q1; Γ1 ⊢ e1 : ∃a.𝜏1 RQ′

• Q2 ⊗Q; Γ2 ⊢ e2 : 𝜏
Therefore Qg ; Γ1 + Γ2 ⊢ unpack x = e1 in e2 : 𝜏 .

G-Case We have
• 𝜋 ·Γ + Δ ⊢▶ case𝜋 e of {K𝑖 x𝑖 → e𝑖 } : 𝜏 { 𝜋 ·𝐶 ⊗&𝐶i

• Qg ⊢ 𝜋 ·𝐶 ⊗&𝐶i

• Γ ⊢▶ e : T 𝜎 { 𝐶
• For each 𝑖 , Δ, xi:(𝜋 ·𝜋i)𝜐i [𝜎/a] ⊢▶ ei : 𝜏 { 𝐶i

By repeated uses of Lemma 6.1 as well as Lemma 6.3, there exist Q, Q′ such that
• Q ⊢ 𝐶
• For each 𝑖 , Q′ ⊢ 𝐶i

• Qg = 𝜋 ·Q ⊗Q′

By induction hypothesis
• Q; Γ ⊢ e : T 𝜎

• For each 𝑖 , Q′;Δ, xi:(𝜋 ·𝜋i)𝜐i [𝜎/a] ⊢ ei : 𝜏
Therefore Qg ;𝜋 ·Γ + Δ ⊢ case𝜋 e of {K𝑖 x𝑖 → e𝑖 } : 𝜏 .

□

PRoof of Lemma 6.5. By induction on U ; Li ⊢s 𝐶 { Lo

S-Atom We have
• U ; Li ⊢s 𝜋 ·q { Lo
• U ; Li ⊢atom

s 𝜋 ·q { Lo
By Property 6.6 we have

(1) Lo ⊆ Li
(2) (U , Li) ⊩ 𝜋 ·q ⊗(∅, Lo)
Then by C-Dom we have (U , Li) ⊢ 𝜋 ·q ⊗(∅, Lo).

S-Add We have
• U ; Li ⊢s 𝐶1 &𝐶2 { Lo
• U ; Li ⊢s 𝐶1 { Lo
• U ; Li ⊢s 𝐶2 { Lo
By induction hypothesis we have
• Lo ⊆ Li
• (U , Li) ⊢ 𝐶1 ⊗(∅, Lo)
• (U , Li) ⊢ 𝐶2 ⊗(∅, Lo)
Then by C-With we have (U , Li) ⊢ 𝐶1 &𝐶2 ⊗(∅, Lo).

S-Mult We have
• U ; Li ⊢s 𝐶1 ⊗𝐶2 { Lo
• U ; Li ⊢s 𝐶1 { L′o
• U ; L′o ⊢s 𝐶2 { Lo
By induction hypothesis we have
• Lo ⊆ L′o
• L′o ⊆ Li
• (U , Li) ⊢ 𝐶1 ⊗(∅, L′o)
• (U , L′o) ⊢ 𝐶2 ⊗(∅, Lo)
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Then by transitivity of ⊆ we have Lo ⊆ Li, and by C-TensoR we have (U , Li) ⊗(U , L′o) ⊢
𝐶1 ⊗𝐶2 ⊗(∅, L′o) ⊗(∅, Lo) by Lemma 6.1 we have (U , Li) ⊢ 𝐶1 ⊗𝐶2 ⊗(∅, Lo).

S-ImplOne We have
• U ; Li ⊢s 1·((U0, L0) =◦𝐶) { Lo
• U ∪ U0; Li ⊎ L0 ⊢s 𝐶 { Lo
• Lo ⊆ Li
By induction hypothesis we have
• (U ∪ U0, Li ⊎ L0) ⊢ 𝐶 ⊗(∅, Lo)
• Lo ⊆ Li ⊎ L0
Then we know that (∅, Li) = (∅, Lo) ⊗(∅, L′i ) for some L′i . Then by Lemma 6.1 we know
that (U ∪ U0, L

′
i ⊎ L0) ⊢ 𝐶 and by C-Impl we have (U , L′i ) ⊢ 1·((U0, L0) =◦𝐶). Finally, by

C-TensoR we conclude that (U , Li) ⊢ 1·((U0, L0) =◦𝐶) ⊗(∅, Lo)
S-ImplMany We have

• U ; Li ⊢s 𝜔 ·((U0, L0) =◦𝐶) { Li
• U ∪ U0; L0 ⊢s 𝐶 { ∅
By induction hypothesis we have
• (U ∪ U0, L0) ⊢ 𝐶 ⊗(∅, ∅)
Then by Lemma 6.1 we have (U ∪ U0, L0) ⊢ 𝐶 and by C-Impl (U , ∅) ⊢ 𝜔 ·((U0, L0) =◦𝐶) and
finally by rule C-TensoR we have (U , Li) ⊢ 𝜔 ·((U0, L0) =◦𝐶) ⊗(∅, Li). Li ⊆ Li holds trivially.

□

Lemma B.2 (WeaKening of wanteds). If Q ⊢ 𝐶 , then 𝜔 ·Q′ ⊗Q ⊢ 𝐶

PRoof. This is proved by a straightforward induction on the derivation of Q ⊢ 𝐶 , using the
corresponding property on the simple-constraint entailment relation from Definition 5.3, for the
C-Dom case. □

Lemma B.3. The following equality holds: 𝜋 ·(𝜌 ·𝐶) = (𝜋 ·𝜌)·𝐶 .

PRoof. This is proved by a straightforward induction on the structure of 𝐶 , using Lemma B.1
for the case 𝐶 = Q. □
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