
A graded dependent type system with a usage-aware

semantics (extended version)

PRITAM CHOUDHURY, University of Pennsylvania, USA

HARLEY EADES III, Augusta University, USA
RICHARD A. EISENBERG, Tweag I/O, France and Bryn Mawr College, USA

STEPHANIE C WEIRICH, University of Pennsylvania, USA

Graded Type Theory provides a mechanism to track and reason about resource usage in type systems. In

this paper, we develop a novel version of such a graded dependent type system, including functions, tensor

products, additive sums, and a unit type. Since standard operational semantics is resource-agnostic, we develop

a heap-based operational semantics and prove a soundness theorem that shows correct usage of resources.

Several useful properties, including the standard type soundness theorem, non-interference of irrelevant

resources and single pointer property for linear resources, can be derived from this theorem.We expect that our

work will provide a base for integrating linearity, irrelevance and dependent types in practical programming

languages like Haskell.

1 INTRODUCTION

Consider this typing judgement.

x :
1Bool, y :1 Int, z :0Bool ⊢ if x theny + 1 elsey − 1 : Int

Here, the numbers in the context indicate that the variable x is used once in the expression, the

variable y is also used only once (although it appears twice), and the variable z is never used at all.

This sentence is a judgement of a graded type system which ensures that the grades or quantities

annotating each in-scope variable reflects how it is used at run time. Graded type systems have a rich

literature [Atkey 2018; Brunel et al. 2014; Gaboardi et al. 2016; Ghica and Smith 2014; McBride 2016;

Orchard et al. 2019; Petricek et al. 2014]. Although the process of tracking usage is straightforward,

this idea grows into a powerful method of instrumenting type systems with analyses of irrelevance

and linearity that have practical benefits like erasure of irrelevant terms (resulting in speed-up)

and compiler optimizations (such as in-place update of linear resources). Another strength of this

idea is its versatility. By abstracting over a domain of resources, the same form of type system

can be used to guarantee safe memory usage, or prevent insecure information flow, or quantify

information leakage, or identify irrelevant computations, or combine various modal logics. Several

research languages, such as Idris 2 [Brady 2020] and Agda [Agda-Team 2020], are starting to adopt

ideas from this domain, and new systems like Granule [Orchard et al. 2019] are being developed to

explore its possibilities.

Our concrete motivation for studying graded type systems is a desire to merge Haskell’s current

form of a linear type system [Bernardy et al. 2018] with dependent types [Weirich et al. 2017] in a

clean manner. Crucially, the combined system must support type erasure: the compiler must be

able to eliminate type arguments to polymorphic functions. Type erasure is key both to support

Authors’ addresses: Pritam Choudhury, Computer and Information Science, University of Pennsylvania, USA, pritam@

seas.upenn.edu; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, 2500 Walton Way, Augusta,

GA, 30904, USA, harley.eades@gmail.com; Richard A. Eisenberg, Tweag I/O, Paris, France, Computer Science, Bryn Mawr

College, 101 N. Merion Ave, Bryn Mawr, PA, 19010, USA, rae@richarde.dev; Stephanie CWeirich, Computer and Information

Science, University of Pennsylvania, 3330 Walnut St, Philadelphia, PA, 19104, USA, sweirich@cis.upenn.edu.

. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

parametric polymorphism and to efficiently execute Haskell programs. We discuss this in more

detail in Section 2.

Although Haskell is our eventual goal, our work remains general. Our designs are compatible

with the current approaches in GHC, but are not specialized to Haskell.

We make the following contributions in this paper:

• Our system flexibly abstracts over an algebraic structure used to count resources. Section 3 de-

scribes this structure—a partially-ordered semiring—and its properties. This use of a resource

algebra is standard, although we identify subtle differences in its specification.

• Section 4 presents a simple graded type system, with standard algebraic types and a graded

modal type. This system is not novel; instead, it establishes a foundation for the dependent

system. However, even at this stage, we identify subtleties in the design space.

• Because the standard operational semantics does not track resources, type safety does not

imply that usage tracking is correct. Section 5 describes a heap-based operational semantics,

inspired by Turner and Wadler [1999]. Every variable in the heap has an associated resource

tag from our abstract structure, modelling how resources are used during computation. We

prove that our type system is sound with respect to this instrumented semantics. This theorem

tells us that well-typed terms will not get stuck by running out of resources. In the process

of showing that this result holds, we identify a key restriction on case analysis that was not

forced by the non-resourced version of type safety.

• Using soundness, we show (a generalization of) the single pointer property for linear resources

in Section 6. The single pointer property says that a linear resource is referenced by precisely

one pointer at runtime. Such a property means that in-place updates of linear resources are

safe.

• Our key contribution is the design of the language, GraD, extending our ideas to dependent

types. In contrast to other approaches [Atkey 2018; McBride 2016], we use the same rules

to check relevant and irrelevant phrases (that is, terms and types). When computing the

resources used by the entire term, we discard irrelevant usages. Types are irrelevant to

computation, so our system ignores these usages. We describe the design of the type system

in Section 7 and extend the soundness proof for the heap semantics in Section 8.

Our system is thus both simpler and more uniform than prior work that combines usage

tracking with dependent types. In particular, Quantitative Type Theory (QTT) [Atkey 2018;

McBride 2016] disables resource checking in types, leading to limitations on the sorts of

reasoning that can be done in the type system. On the other hand, Resourceful Dependent

Types [Abel 2018] and GrTT [Moon et al. 2020] maintain separate counts of usages in types

and terms, incurring additional bookkeeping for less benefit. Section 9.3 provides a detailed

comparison of our work with QTT.

• We have mechanized, in Coq, some intricate syntactic properties of our development (sub-

stitution, weakening, preservation, progress). These proof scripts are available online at

http://www.github.com/sweirich/graded-haskell.

This paper is an extended version of “A graded dependent type system with a usage-aware seman-

tics”’.

2 OUR GOAL

While the exploration of graded type systems in this paper is applicable to a wide array of examples

(see Section 3.2), we were originally motivated to study such systems in the context of GHC/Haskell,

where we wish to combine its existing support for linearity [Bernardy et al. 2018] (available as

, Vol. 1, No. 1, Article . Publication date: November 2020.

http://www.github.com/sweirich/graded-haskell

A graded dependent type system with a usage-aware semantics (extended version) 3

of GHC 9.0) with support for dependent types [Eisenberg 2016; Gundry 2013; Weirich et al. 2019,

2017].

A key ingredient in a successful combination of linear and dependent types for Haskell is to

capitalize on the 0 quantity to mean irrelevant, where an irrelevant sub-term is not needed in the

operational semantics to compute the reduct of a term. In other words, it is sound to erase irrelevant

terms. Previous work [e.g., Weirich et al. 2017] discusses irrelevant quantification for Dependent

Haskell. Irrelevance for Haskell is important for two reasons: it allows us to retain traditional

parametric polymorphism even in the face of dependent types and it allows us to be concrete about

type erasure. Haskell, with industrial users who care deeply about performance, must retain its

ability to erase types before runtime. By noting where arguments should be quantified irrelevantly,

programmers can indicate where they expect type erasure to take place. This will be a user-facing

feature: as Eisenberg [2018] explains,
1
users will explicitly denote whether they want irrelevant

quantification or relevant quantification. By marking irrelevant quantification using 0, irrelevance

fits in swimmingly with Haskell’s current story around linear types.

Furthermore, given that we plan to implement these ideas concretely inside GHC, it is essential

that the system be as simple as possible. As discussed in more detail in Section 9.3, our system

eliminates features from other systems that are not necessary in our case. Doing so will aid in

integration with the rest of the GHC implementation.

Our intentions laid out, we start our exploration by reviewing semirings, the key algebraic

structure used to abstractly represent grades.

3 THE ALGEBRA OF QUANTITIES

The goal of a graded type theory is to track the demands that computations make on variables

that appear in the context. In other words, the type system enables a static accounting of runtime

resources “used” in the evaluation of terms. This form of type system generalizes linear types

(where linear resources must be used exactly once) [Wadler 1990] and bounded linear types (where

bounded resources must be used a finite number of times) [Girard et al. 1992], as well as many,

many other type systems [Abadi et al. 1999; Miquel 2001; Pfenning 2001; Reed and Pierce 2010;

Volpano et al. 1996].

This generality derives from the fact that the type system is parameterized over an abstract

algebraic structure of grades to model resources.
2
The abstract algebraic structure should enable

addition and multiplication of resources and these operations should conform to our general

understanding of resource arithmetic. An algebraic structure that captures this idea quite nicely is

a partially-ordered semiring.

3.1 Partially-ordered semirings

A semiring is a setQ with two binary operations, _+_ : Q ×Q → Q (addition) and _·_ : Q ×Q → Q
(multiplication), and two distinguished elements, 0 and 1, such that (Q,+, 0) is a commutative

monoid and (Q, ·, 1) is a monoid; furthermore, multiplication is both left and right distributive over

addition and zero is an annihilator for multiplication. Note that a semiring is not a full ring because

addition does not have an inverse—we cannot subtract.

We mark the variables in our contexts with quantities drawn from a semiring to represent

demand of resources. In other words, if we have a typing derivation for a term a with free variable

x marked with q, we know that a demands q uses of x.

1
That proposal was not accepted, as it was deemed premature. Even so, the GHC Steering Committee appreciated the

proposal and encouraged it to be re-raised when the time is right.

2
Grades are also called quantities, modalities, resources, coeffects or usages.

, Vol. 1, No. 1, Article . Publication date: November 2020.

4 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

We can weaken the precision of our type system (but increase its flexibility) by allowing the

judgement to express higher demand than is actually necessary. For example, we may need to use

some variable only once but it may be convenient for the type system to declare that the usage

of that variable be unrestricted. To model this notion of sub-usage, we need an ordering on the

elements of the abstract semiring, reflecting our notion of leniency. A partial order captures the

idea nicely. Since we work with a semiring, such an order should also respect the binary operations

of the semiring. Concretely, for a partial order ≤ on Q , if q1 ≤ q2, then for any q ∈ Q , we should
have q + q1 ≤ q + q2, q · q1 ≤ q · q2, and q1 · q ≤ q2 · q. A semiring with a partial order satisfying

this condition is called a partially-ordered semiring.

This abstract structure captures the operations and properties that the type system needs for

resource accounting. Because we are working abstractly, we are limited to exactly these assumptions.

In practice, it means our design is applicable to settings beyond the simple use of natural numbers

to count resources.

3.2 Examples of partially-ordered semirings

Looking ahead, there are a few semirings that we are interested in. The trivial semiring has a single

element, and all operations just return that element. Our type system, when specialized to this

semiring, degenerates to the usual form of types as the quantities are uninformative.

The boolean semiring has two elements, 0 and 1, with the property that 1 + 1 = 1. A type system

drawing quantities from this semiring distinguishes between variables that are used (marked

with one) and ones that are unused (marked with zero). In such a system, the quantity 1 does

not correspond to a linear usage: this system does not count usage, but instead checks whether a

variable is used or not.

There are two different partial orders that make sense for the boolean semiring. If we use the

reflexive relation, then this type system tracks relevance precisely. If a variable is marked with 0 in

the context, then we know that the variable must not be used at runtime, and if it is marked with 1,

then we know that it must be used. On the other hand, if the partial ordering declares that 0 ≤ 1,

then we still can determine that 0-marked variables are unused, but we do not know anything

about the usage of 1-marked variables.

The linearity semiring has three elements, 0, 1 and ω, where addition and multiplication are

defined in the usual way after interpreting ω as “greater than 1”. So, we have 1 + 1 = ω, ω + 1 = ω,
and ω · ω = ω. A system using the linearity semiring tracks linearity by marking linear variables

with 1 and unrestricted variables with ω. A suitable ordering in this semiring is the reflexive closure

of {(0,ω), (1,ω)}. We do not want 0 ≤ 1, since then we would not be able to guarantee that linear

variables in the context are used exactly once. This semiring is the one that makes the most sense

for Haskell as it integrates linearity (1) with irrelevance (0) and unrestricted usage (ω).
The five-point linearity semiring has five elements, 0, 1, Aff, Rel and ω, where addition and

multiplication are defined in the usual way after interpreting Aff as “1 or less", Rel as “1 or more",

and ω as unrestricted. An ordering reflecting this interpretation is the reflexive transitive closure

of {(0,Aff)), (1,Aff), (1, Rel), (Aff,ω), (Rel,ω)}. This semiring can be used to track irrelevant, linear,

affine, relevant, and unrestricted usage.

A security semiring is based on a lattice of security levels, with increasing order representing

decreasing security. The+ and · correspond to the join andmeet operations of the lattice respectively.

The partial order corresponds to the lattice order and 0 and 1 are the Private and Public security
levels respectively. Public can never be as or more secure than Private, i.e. Public ≰ Private. This
lattice may include additional elements besides Private and Public, corresponding to multiple levels

of secrecy. As Abel and Bernardy [2020] describe, security type systems defined in this way differ

from the usual convention (such as Abadi et al. [1999]) in that security levels are relative to 1, the

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 5

(Grammar)

types A, B ::= Unit | qA → B | 2q
A | A ⊗ B | A ⊕ B

terms a, b ::= x | λx :qA.a | a b

| unit | let unit = a in b | boxq a | let box x = a in b

| (a, b) | let (x,y) = a in b
| inj

1
a | inj

2
a | caseq a of b1; b2

usage contexts Γ ::= � | Γ, x :qA
contexts ∆ ::= � | ∆, x:A

typing judgement ∆ ; Γ ⊢ a : A

Fig. 1. The simply typed graded λ-calculus

level of the program under execution. (Note that the product of two non-zero elements can be 0 in

such semirings.)

Many other examples of semirings are possible. Orchard et al. [2019] andAbel and Bernardy [2020]

include comprehensive lists of several other applications including a type system for differential

privacy [Reed and Pierce 2010] and a type system that tracks covariant/contravariant use of

assumptions.

Now, we are ready to design a type system over an arbitrary partially-ordered semiring.

4 A SIMPLE GRADED TYPE SYSTEM

Our goal is to design a dependent usage-aware type system. But, for simplicity, we start with a

simply-typed usage-aware system similar to the system of Petricek et al. [2014]. The grammar and

typing judgement for this system appear in Figure 1 on page 5. It is parameterized over an arbitrary

partially-ordered semiring (Q, 1, ·, 0,+, ≤) with grades q ∈ Q .
The typing judgement for this system has the form ∆ ; Γ ⊢ a : A; the full rules appear in

Appendix A.1, and selected rules appear inline, below. This judgement includes both a standard

typing context ∆ and a usage context Γ, a copy of the typing context annotated with grades. For

brevity in examples, we often elide the standard typing context as the information is subsumed by

the usage context. Indeed, in any derivation, the typing context and the usage context correspond:

Notation 4.1.

• The notation ⌊Γ⌋ denotes a typing context ∆ same as Γ, but with no grades.

• The notation Γ denotes the vector of grades in Γ.
• The notation ∆ ⊢ Γ denotes that ∆ = ⌊Γ⌋.

Lemma 4.2 (Typing context correspondence). If ∆ ; Γ ⊢ a : A, then ∆ ⊢ Γ.

This style of including both a plain typing context ∆ and its usage counterpart Γ in the judgement

is merely for convenience; it allows us to easily tell when two usage contexts differ only in their

quantities. There are many alternative ways to express the same information in the type system:

we could have only one usage context Γ and add constraints, or have a typing context ∆ and a

separate vector of quantities.

4.1 Type system basics

We are now ready to start our tour of the typing rules of this system.

, Vol. 1, No. 1, Article . Publication date: November 2020.

6 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

Variables.

ST-Var

x < dom∆ ∆ ⊢ Γ

(∆, x:A) ; (0 · Γ, x :1A) ⊢ x : A

ST-Weak

x < dom∆
∆ ; Γ ⊢ a : B

∆, x:A ; Γ, x :0A ⊢ a : B

We see here that a variable x has type A if it has type A in the context—that part is unsurprising.

However, as is typical in this style of systems, the context is extended to include 0 · Γ: this notation
means that all variables in Γ must have a quantity of 0.

Notation 4.3 (Context scaling). The notation q · Γ denotes a context Γ′ such that, for each

x :
r
A ∈ Γ, we have x :q ·r A ∈ Γ′.

The rule ST-Var states that all variables other than x are not used in the expression x, that is why

their quantity is zero. Note also that x :
1
A occurs last in the context. If we wish to use a variable

that is not the last item in the context, the rule ST-Weak allows us to remove (reading from bottom

to top) zero-usage variables at the end of a context.

Sub-usage.

ST-Sub

∆ ; Γ1 ⊢ a : A Γ1 ≤ Γ2

∆ ; Γ2 ⊢ a : A

We may allow our contexts to provide more resources than is necessary. Sub-usaging, as it is

commonly referred to, allows us to assume more resources in our context than are necessary.

Notation 4.4 (Context sub-usage). The notation Γ1 ≤ Γ2 means ⌊Γ1⌋ = ⌊Γ2⌋ where, for every
corresponding pair of assumptions x :

q1
A ∈ Γ1 and x :

q2
A ∈ Γ2, the condition q1 ≤ q2 holds.

Functions.

ST-Lam

∆, x:A ; Γ, x :qA ⊢ a : B

∆ ; Γ ⊢ λx :qA.a : (qA → B)

ST-App

∆ ; Γ1 ⊢ a : (qA → B)

∆ ; Γ2 ⊢ b : A

∆ ; Γ1 + q · Γ2 ⊢ a b : B

Any quantitative type system must be careful around expressions that contain multiple sub-

expressions. Function application is a prime example, so we examine rule ST-App next. In this rule,

we see that the function a has type
q
A → B, meaning that it uses its argument, of type A, q times

to produce a result of type B. Accordingly, we must make sure that the argument expression b can

be used q times. Put another way, we must multiply the usage required for b, as recorded in the

typing context Γ2, by q. We see this in the context used in the rule’s conclusion: Γ1 + q · Γ2.
This introduces another piece of important notation:

Notation 4.5 (Context addition). Adding contexts Γ1 + Γ2 is defined only when ⌊Γ1⌋ = ⌊Γ2⌋.
The result context Γ3 is obtained by point-wise addition of quantities; i.e. for every x :

q1
A ∈ Γ1 and

x :
q2
A ∈ Γ2, we have x :

q1+q2
A ∈ Γ3. Accordingly, ⌊Γ3⌋ = ⌊Γ1⌋.

Our approach using two contexts ∆ and Γ works nicely here. Because both premises to rule ST-

App use the same ∆, we know that the required precondition of context addition is satisfied. The

high-level idea here is common in sub-structural type systems: whenever we use multiple sub-

expressions within one expression, we must split the context. One part of the context checks one

sub-expression, and the remainder checks other sub-expression(s).

Example 4.6 (Irrelevant application). Before considering the rest of the system, it is instructive to

step through an example involving a function that does not use its argument in the context of the

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 7

linearity semiring. We say that such arguments are irrelevant. Suppose that we have a function f , of

type
0
B → 1

A → A. (Just from this type, we can see that f must be a constant function.) Suppose

also that we want to apply this function to some variable x. In this case, define the usage contexts

Γ0 = f :
1 (0B → 1

A → A) Γ1 = Γ0, x :
0
B Γ2 = f :

0 (0B → 1
A → A), x :1B

and construct a typing derivation for the application:

ST-App

ST-Weak

ST-Var

⌊Γ0⌋ ; Γ0 ⊢ f :
0
B → 1

A → A

⌊Γ1⌋ ; Γ1 ⊢ f :
0
B → 1

A → A

ST-Var

⌊Γ1⌋ ; Γ2 ⊢ x : B

⌊Γ1⌋ ; Γ1 + 0 · Γ2 ⊢ f x :
1
A → A

Working through the context expression Γ1 + 0 · Γ2, we see that the computed final context,

derived in the conclusion of the application rule is just Γ1 again. Although the variable x appears

free in the expression f x, because it is the argument to a constant function here, this use does not

contribute to the overall result.

4.2 Data structures

Unit.

ST-Unit

� ; � ⊢ unit : Unit

ST-UnitE

∆ ; Γ1 ⊢ a : Unit
∆ ; Γ2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let unit = a in b : B

The Unit type has a single element, unit. To eliminate a term of this type, we just match it with

unit. Since the elimination form requires the resources used for both the terms, we add the two

contexts in the conclusion of rule ST-UnitE.

The graded modal type.

ST-Box

∆ ; Γ ⊢ a : A

∆ ; q · Γ ⊢ boxq a : 2q
A

ST-LetBox

∆ ; Γ1 ⊢ a : 2q
A

∆, x:A ; Γ2, x :
q
A ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let box x = a in b : B

The type 2q
A is called a graded modal type or usage modal type. It is introduced by the construct

boxq a, which uses the expression q times to build the box. This box can then be passed around as

an entity. When unboxed (rule ST-LetBox), the continuation has access to q copies of the contents.

Products.

ST-Pair

∆ ; Γ1 ⊢ a : A

∆ ; Γ2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ (a, b) : A ⊗ B

ST-Spread

∆ ; Γ1 ⊢ a : A1 ⊗ A2

∆ ; Γ2, x :
1
A1, y :

1
A2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let (x,y) = a in b : B

The type system includes (multiplicative) products, also known as tensor products. The two

components of these pairs do not share variable usages. Therefore the introduction rule adds

the two contexts together. These products must be eliminated via pattern matching because

both components must be used in the continuation. An elimination form that projects only one

component of the tuple would lose the usage constraints from the other component. Note that even

, Vol. 1, No. 1, Article . Publication date: November 2020.

8 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

though both components of the tuple must be used exactly once, by nesting a modal type within

the tuple, programmers can construct data structures with components of varying usage.

Sums.

ST-Inj1

∆ ; Γ ⊢ a : A1

∆ ; Γ ⊢ inj
1
a : A1 ⊕ A2

ST-Inj2

∆ ; Γ ⊢ a : A2

∆ ; Γ ⊢ inj
2
a : A1 ⊕ A2

ST-Case

1 ≤ q

∆ ; Γ1 ⊢ a : A1 ⊕ A2

∆ ; Γ2 ⊢ b1 :
q
A1 → B

∆ ; Γ2 ⊢ b2 :
q
A2 → B

∆ ; q · Γ1 + Γ2 ⊢ caseq a of b1; b2 : B

Last, the system includes (additive) sums and case analysis. The introduction rules for the first

and second injections are no different from a standard type system. However, in the elimination

form, rule ST-Case, the quantities used for the scrutinee can be different than the quantities used

(and shared by) the two branches. Furthermore, the case expression may be annotated with a

quantity q that indicates how many copies of the scrutinee may be demanded in the branches.

Both branches of the case analysis must use the scrutinee at least once, as indicated by the 1 ≤ q

constraint.

4.3 Type soundness

For the language presented above, we define an entirely standard call-by-name reduction relation

a ; a
′
, included in Appendix A.2. With this operational semantics, a syntactic proof of type

soundness follows in the usual manner, via the entirely standard progress and preservation lemmas.

The substitution lemma that is part of this proof is of particular interest for us, as it must account

for the number of times the substituted variable (x, in our statement) is used when computing the

contexts used in the conclusion of the lemma:

Lemma 4.7 (Substitution). If ∆1 ; Γ ⊢ a : A and ∆1, x :A,∆2 ; Γ1, x :
q
A, Γ2 ⊢ b : B, then

∆1,∆2 ; Γ1 + q · Γ, Γ2 ⊢ b{a/x} : B.

4.4 Discussion and Variations

At this point, the language that we have developed recalls systems found in prior work, such as

Brunel et al. [2014], Orchard et al. [2019], Wood and Atkey [2020] and Abel and Bernardy [2020].

Most differences are cosmetic—especially in the treatment of usage contexts. Of these, the most

similar is the concurrently developed Abel and Bernardy [2020], which we compare below.

• First, Abel and Bernardy [2020] include a slightly more expressive form of pattern matching.

Their elimination forms for the box modality and products multiply each scrutinee by a

quantity q, providing that many copies of its subcomponents to the continuation, as in our

rule ST-Case. For simplicity, we have omitted this feature; it is not difficult to add.

• Second, Abel and Bernardy [2020] require that the semiring include least-upper bounds for

the partial order of the semiring. This requirement is not necessary for type soundness, but

it does make type checking more compositional.

In the rule for case, like Abel and Bernardy [2020], we need the requirement that 1 ≤ q. In our

system as well as theirs, it turns out that this requirement is not motivated by the type soundness

theorem stated above: the theorem holds without it. Their condition was instead motivated by

their parametricity theorems. Our condition is motivated by the heap soundness theorem that we

present in the next section.

Indeed, The standard type soundness theorem that we show above is not very informative

because it does not show that the quantities are correctly used. Therefore, to address this issue, we

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 9

turn to a heap-based semantics, based on Launchbury [1993] and Turner and Wadler [1999], to

account for resources usage during computation.

5 HEAP SEMANTICS FOR SIMPLE TYPE SYSTEM

A heap semantics shows how a term evaluates when the free variables of the term are assigned

other terms. The assignments are stored in a heap, represented here as an ordered list. We associate

an allowed usage, basically an abstract quantity of resources, to each assignment. We change these

quantities as the evaluation progresses. For example, a typical call-by-name reduction goes like

this:
3

[x
3

7→ 1,y
1

7→ x + x](x + y) look up value of x , decrement its usage

⇒[x
2

7→ 1,y
1

7→ x + x]1 + y look up value of y, decrement its usage

⇒[x
2

7→ 1,y
0

7→ x + x]1 + (x + x) look up value of x , decrement its usage

⇒[x
1

7→ 1,y
0

7→ x + x]1 + (1 + x) look up value of x , decrement its usage

⇒[x
0

7→ 1,y
0

7→ x + x]1 + (1 + 1) addition step

⇒[x
0

7→ 1,y
0

7→ x + x]3

5.1 The step judgement

The reduction above is expressed informally as a sequence of pairs of heap H and expression a. We

formalize this relation using the following judgement, which appears in Fig 2.

[H] a ⇒r

S
[H ′

; u′ ; Γ′] a′

The meaning of this relation is that r copies of the term a use the resources of the heap H and

step to r copies of the term a′, with H ′
being the new heap. The relation also maintains additional

information, which we explain below.

Heap assignments are of the form x

q

7→ Γ ⊢ a : A, associating an assignee variable with its allowed

usage q and assignment a. The context Γ and type A help in the proof of our soundness theorem

(5.11). For a heap H , we use ⌊H⌋ to represent H excluding the allowed usages and THU to represent

just the list of underlying assignments. We call ⌊H⌋ and THU the erased and bare views of H

respectively. For example, for H = [x
q

7→ Γ ⊢ a : A], the erased view ⌊H⌋ = [x 7→ Γ ⊢ a : A] and the

bare view THU = [x 7→ a]. The vector of allowed usages of the variables in H is denoted by H .

Because we use a call-by-name reduction, we don’t evaluate the terms in the heap; we just modify

the quantities associated with the assignments as they are retrieved. Therefore, after any step, H
′

will contain all the previous assignments of H , possibly with different usages. Furthermore, a beta-

reduction step may also add new assignments to H ′
. To allocate new variable names appropriately,

we need a support set S in this relation; fresh names are chosen avoiding the variables in this set.

We keep track of these new variables that are added to the heap along with the allowed usages of

their assignments using the embedded context Γ′.4 Therefore, after a step [H] a ⇒r

S
[H ′

; u′ ; Γ′] a′,
the length of H

′
is the sum of the lengths of H and Γ′.

3
We don’t have Int type and + function in our language, but we use them for the sake of explanation.

4
Instead of full contexts Γ′, we could have just used a list of variable/usage pairs here; but we pass dummy types along with

them for ease of presentation later.

, Vol. 1, No. 1, Article . Publication date: November 2020.

10 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

[H] a ⇒r

S
[H ′

; u′ ; Γ′] a′ (Small-step reduction relation (excerpt))

Small-Var

1 ≤ r

[H1, x
(q+r)
7→ Γ ⊢ a : A,H2] x ⇒r

S
[H1, x

q

7→ Γ ⊢ a : A,H2 ; 0 |H1 | ⋄ r ⋄0 |H2 |
; �] a

Small-AppL

[H] a ⇒r

S ∪ fv b
[H ′

; u′ ; Γ] a′

[H] a b ⇒r

S
[H ′

; u′ ; Γ] a′ b

Small-AppBeta

x < VarH ∪ fv b ∪ fv a − {y} ∪ S

a
′ = a{x/y}

[H] (λy :qA′.a) b ⇒r

S
[H, x

r ·q
7→ Γ ⊢ b : A ; 0 |H | ⋄0 ; x :r ·qA] a′

Small-CaseL

[H] a ⇒
r ·q

S ∪ fv b1 ∪ fv b2

[H ′
; u′ ; Γ] a′

[H] caseq a of b1; b2 ⇒r

S
[H ′

; u′ ; Γ] caseq a′ of b1; b2

Small-Case1

[H] caseq (inj1 a) of b1; b2 ⇒
r

S
[H ; 0 |H |

; �] b1 a

Small-Case2

[H] caseq (inj2 a) of b1; b2 ⇒
r

S
[H ; 0 |H |

; �] b2 a

Small-Sub

[H1] a ⇒r

S
[H ′

; u′ ; Γ] a′

H1 ≤ H2

[H2] a ⇒r

S
[H ′

; u′ ; Γ] a′

Fig. 2. Heap semantics (excerpt)

Notation 5.1. The notation 0n denotes a vector of 0’s of length n. When n is clear from the context,

we simply write 0. The notation u1 ⋄u2 denotes concatenation. Here fv a stands for the free variables

of a while VarH stands for the domain of H and the free variables of the terms appearing in the

assignments of H .

Now, because we work with an arbitrary semiring (possibly without subtraction), this heap

semantics is non-deterministic. For example, consider a step [x
q
7→ a]x ⇒ [x

q′
7→ a]a, where

q = q′ + 1. Here, we are using x once, so we need to reduce its usage by 1. But in an arbitrary

semiring, there may exist multiple new quantities, q′′ , q′, such that q = q′ + 1 = q′′ + 1. For

example, in the linearity semiring, we have ω = 1 + 1 = ω + 1. In this case, [x
ω
7→ a]x ⇒ [x

1

7→ a]a

and [x
ω
7→ a]x ⇒ [x

ω
7→ a]a.

The absence of subtraction also means that given an initial heap and a final heap, we really

don’t know how much resources have been used by the computation. The only way to know this

is to keep track of resources while they are being used. The amount of resources used up can be

expressed as a quantity vector u′ called consumption vector, with its components showing usage at

the corresponding variables in H
′
. (The length of u′ will always be the same as H

′
.)

Finally, owing to the presence of case expressions that can use the scrutinee more than once, we

need to be able to evaluate several copies of the scrutinee in parallel before passing them on to the

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 11

appropriate branch. So we step r copies of a term a in parallel to get r copies of a
′
. We call r the

copy quantity of the step. For the most part, we shall be interested in copy quantity of 1.

Notation 5.2. We use [H] a ⇒S [H
′
; u′ ; Γ′] a′ to denote [H] a ⇒1

S
[H ′

; u′ ; Γ′] a′.

5.2 Reduction relation

Figure 2 contains an excerpt of the reduction relation. They mirror the ordinary small-step rules,

but there are some crucial differences. For example, this semantics includes rule Small-Var that

allows a variable look-up, provided its usage permits. The look-up consumes the copy quantity

from the allowed usage. But the copy quantity cannot be arbitrary here – we are consuming the

resource at least once. So we restrict the copy quantity to be 1 or more. This is the only rule that

modifies the usage of an existing variable in the heap.

In this reduction relation, rule AppBeta load new assignments into the heap instead of using

immediate substitution. The substitution happens in steps through variable look-ups. To avoid

conflict, we choose new variables excluding the ones already in use. Since we are evaluating r
copies, we set the allowed usage of the variable to r ·qwhereq is the usage annotation from the term.

The rule Small-CaseL is interesting since the copy quantity in the premise and the conclusion

are different. In fact, we introduced copy quantity to properly handle usages while evaluating case
expressions. For evaluating r copies of the case expression, we need to evaluate r · q copies of the

scrutinee since the scrutinee gets used q times in either branch.

The rule Small-Sub rule reduces the allowed usages in the heap and then lets the term take a

step. Here, we use H1 ≤ H2 to mean ⌊H1⌋ = ⌊H2⌋, where for corresponding pair of assignments

x

q1

7→ Γ ⊢ a : A and x

q2

7→ Γ ⊢ a : A in H1 and H2 respectively, the condition q1 ≤ q2 holds.

Themulti-step reduction relation is the transitive closure of the single-step relation. In ruleMulti-

Many, the consumption vectors from the steps are added up and the contexts of new variables are

concatenated. The copy quantity is the same in both the premises and the conclusion since this

represents parallel multi-step evaluation of r copies.

[H] a ⇒⇒r

S
[H ′

; u′ ; Γ] b (Multi-Step relation)

Multi-One

[H] a ⇒r

S
[H ′

; u′ ; Γ] b

[H] a ⇒⇒r

S
[H ′

; u′ ; Γ] b

Multi-Many

[H] a ⇒r

S
[H ′

; u′ ; Γ1] b1
[H ′] b1 ⇒⇒

r

S
[H ′′

; u′′ ; Γ2] b

[H] a ⇒⇒r

S
[H ′′

; u′ ⋄0 |Γ2 | + u′′ ; Γ1, Γ2] b

5.3 Accounting of resources

The reduction relation enforces fair usage of resources, leading to the following theorem.

Theorem 5.3 (Conservation). If [H] a ⇒⇒r

S
[H ′

; u′ ; Γ′] a′, then H
′ + u′ ≤ H ⋄ Γ′.

Here, H represents the available resources and Γ′ represents the newly added resources; whereas

H
′
represents the resources left and u′ the resources that were consumed. So the theorem says

that the initial resources concatenated with those that are added during evaluation, are equal to or

more than the remaining resources plus those that were used up. Note that if the partial order is

the trivial reflexive order, any ≤ becomes an equality. In such a scenario, the reduction relation

, Vol. 1, No. 1, Article . Publication date: November 2020.

12 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

enforces strict conservation of resources. More generally, this theorem states that we don’t use

more resources than what we are entitled to.

Compared to the substitution-based semantics, in this heap semantics, terms can “get stuck” due

to lack of resources. Let us look at the following evaluation:

[x
2

7→ 1,y
1

7→ x + x](x + y) look up value of x , decrement its usage

⇒[x
1

7→ 1,y
1

7→ x + x]1 + y look up value of y, decrement its usage

⇒[x
1

7→ 1,y
0

7→ x + x]1 + (x + x) look up value of x , decrement its usage

⇒[x
0

7→ 1,y
0

7→ x + x]1 + (1 + x) look up value of x , stuck!

The evaluation gets stuck because the starting heap does not contain enough resources for the

evaluation of the term. The term needs to use x thrice; whereas the heap contains only two copies

of x .
But this is not the only way in which an evaluation can run out of resources. Such a situation may

also happen through “unwise usage”, even when the starting heap contains enough resources. For

example, with the linearity semiring, the evaluation: [x
ω
7→ 5]x + (x + x) ⇒ [x

1

7→ 5]1 + (x + x) ⇒

[x
0

7→ 5]1 + (1 + x) gets stuck because in the first step, ω was “unwisely” split as 1 + 1 instead of

being split as ω + 1.

Our aim, then, is to show that given a heap that contains enough resources, a well-typed term

that is not a value, can always take a step such that the resulting heap contains enough resources

for the evaluation of the resulting term. We shall formalize what it means for a heap to contain

enough resources. But before that, let us explore the relationship between the various possible

steps a term can take when provided with a heap.

5.4 Determinism and Alpha-equivalence

Earlier, we pointed out that the step relation is non-deterministic. But on a closer look, we find that

the non-determinism is limited more or less to the usages. If a term steps in two different ways

when provided with a heap, the resulting terms are the same; the resulting heaps, though, may

have different allowed usage vectors. Here, we formulate a precise version of this statement.

A term, when provided with a heap, can step either by looking up a variable or by adding a

new assignment. Now, if the heap does not contain duplicate assignments for the same variable,

look-up will always produce the same result. We call such heaps proper. Note that the reduction

relation maintains this property of heaps. So hereafter, we restrict our attention to proper heaps.

Next, if a term steps by adding a new assignment, we may choose different fresh variables leading

to different resulting terms. But such a difference is reconcilable. Viewed as closures, such heap

term pairs are α-equivalent.
Given a heapH and a term a, let us call (THU,a) amachine configuration. Two heap term pairs are

α-equivalent if the corresponding machine configurations are identical up to systematic renaming

of assignee variables. We denote α-equivalence by ∼α .

The step relation, then, is deterministic in the following sense:

Lemma 5.4 (Determinism). If [H1] a1 ⇒
r1

S
[H ′

1
; u′

1
; Γ′

1
] a′

1
and [H2] a2 ⇒

r2

S
[H ′

2
; u′

2
; Γ′

2
] a′

2
and

(H1, a1) ∼α (H2, a2), then (H ′
1
, a′

1
) ∼α (H ′

2
, a′

2
).

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 13

The lemma above says that, if a term, when provided with a heap, takes a step in two different

ways, then the resulting bare-heap and term pairs are basically the same. We know that the ordinary

small-step semantics is deterministic. The inclusion of allowed usages in the heap semantics is not

to produce multiple reducts but just to block evaluation at the point where consumption reaches

its permitted limit. This is an important point and needs more elaboration.

For a reduction [H] a ⇒r

S
[H ′

; u′ ; Γ′] a′, call [THU]a ⇒ [TH ′U]a′ themachine view of reduction.

Also, call a reduction consisting of n steps an n-chain reduction. Then, the machine view of every

n-chain reduction of a term in a heap is the same, modulo α-equivalence. So, if there exists an
n-chain reduction of a to a′, starting with heap H , we know that there is a way by which a can

reduce to a′ without running out of resources, implying the validity of the reduction. In such a

scenario, we may as well forget all the usage annotations and evaluate a for n steps starting with

THU. By the above lemma, such an evaluation in this machine environment is deterministic and

hence unique. The reduced heap term pair that we get is the same (modulo α-equivalence). Along
with the soundness theorem, this shall give us a deterministic reduction strategy that is correct.

Now that we see the equivalence of all the possible reducts, we explore its relation with the

ordinary small-step reduct.

5.5 Bisimilarity

The ordinary and the heap-based reduction relations are bisimilar in a way we make precise below.

To compare, we need to define some terms. We call a heap acyclic iff the term assigned to a variable

does not refer to itself or to any other variables appearing subsequently in the heap. Note that the

reduction relation preserves acyclicity. Hereafter, we restrict our attention to proper, acyclic heaps.

Now, for a heap H , define a{H } as the term obtained by substituting in a, in reverse order, the

corresponding terms for the variables in the heap. Then we have the following lemma:

Lemma 5.5. If [H] a ⇒r

S
[H ′

; u′ ; Γ′] a′, then a{H } = a
′{H ′} or a{H } ; a

′{H ′}. Further, if

[�] a ⇒r

S
[H ′

; u′ ; Γ′] a′, then a ; a
′{H ′}.

Lemma 5.6. If a ; a1, then for a heap H , we have [H] a ⇒r

S
[H,H ′

; u ; Γ] a2 where a2{H ′} = a1.

The heap reduction relation splits the ordinary β-reduction rules into an assignment addition

rule and a variable look-up rule. This enables the heap-based rules to substitute one occurrence of

a variable at a time while the ordinary β-rules substitute all occurrences of a variable at once. If we
perform substitution immediately after loading a new assignment to the heap, then the heap-based

rules and the ordinary step rules are essentially the same. The above lemmas formalize this idea.

The heap-based rules substitute one occurrence of a variable at a time and keep track of usage

and obstruct unfair usage. With this constraint in place, we ought to know how much resources

shall be necessary for evaluating a term. This will tell us how much resources the starting heap

should contain. The type system helps us know this as we see next.

5.6 Heap compatibility

The key idea behind this language design is that, if the resources contained in a heap are judged to

be “right” for a term by the type system, the evaluation of the term in such a heap does not get

stuck. With the heap-based reduction rules enforcing fairness of usage, this would mean that the

type system does a proper accounting of the resource usage of terms.

The compatibility relation H ⊢ ∆; Γ presented below expresses the judgement that the heap H
contains enough resources to evaluate any term that type-checks in the usage context Γ. A heap

that is compatible with some context is called a well-formed heap.

, Vol. 1, No. 1, Article . Publication date: November 2020.

14 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

H ⊢ ∆; Γ (Heap Compatibility)

Compat-Empty

� ⊢ �;�

Compat-Cons

H ⊢ ∆; Γ1 + (q · Γ2)
∆ ; Γ2 ⊢ a : A

x < domH

H, x
q

7→ Γ2 ⊢ a : A ⊢ ∆, x:A; Γ1, x :
q
A

The rule Compat-Cons rule reminds us of the substitution lemma 4.7. In a way, this rule is

converse of the substitution lemma. It loads q potential single-substitutions into the heap and lets

the context use the variable q times.

Example 5.7. Consider the following derivation:
5

� ⊢ � � ⊢ 1 : Int

x1

7

7→ 1 ⊢ x1 :
7 Int x1 :

2 Int ⊢ x1 + nx1 : Int

x1

7

7→ 1, x2
3

7→ x1 + nx1 ⊢ x1 :
1 Int, x2 :3 Int x1 :

1 Int, x2 :2 Int ⊢ x1 + n(x2 + nx2) : Int

x1

7

7→ 1, x2
3

7→ x1 + nx1, x3
1

7→ x1 + n(x2 + nx2) ⊢ x1 :
0 Int, x2 :1 Int, x3 :1 Int

The context x1 :
7 Int splits its resources amongst derivations of x2 = x1 + nx1 (thrice) and

x3 = x1 + n(x2 + nx2) (once). The heap keeps a record, in the form of allowed usages, of how the

context gets split. A heap compatible with a context, therefore, satisfies the resource demands of a

term derived in this context, as accounted for by the type system.

We pointed out earlier that the rule Compat-Cons rule is like a converse substitution lemma.

The following lemma is a formalization of this idea:

Lemma 5.8 (Multi-substitution). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then � ; � ⊢ a{H } : A.

Because rule Compat-Cons leads to expansion (or reverse substitution), we can re-substitute

maintaining well-typedness.

The compatibility relation is crucial to our development, as we explore in more detail below.

A heap can be viewed as a memory graph where the assignee variables correspond to memory

locations and the assigned terms to data stored in those locations. The allowed usage then, is the

number of ways the location can be referenced.

5.7 Graphical and algebraic views of the heap

A heap H where H ⊢ ∆; Γ can be viewed as a weighted directed acyclic graphGH ,Γ . Let H contain

n assignments with the jth one being xj

qj

7→ Γj ⊢ aj : Aj . Then, GH ,Γ is a DAG with (n + 1) nodes, n
nodes corresponding to the n variables in H and one extra node for Γ, referred to as the source

node. Let vj be the node corresponding to x j and vд be the source node. For xi :
qji Ai in Γj (where

i < j) add an edge with weightw(vj ,vi) := qji from vj to vi . (Note that Γj only contains variables

x1 through x j−1.) We do this for all nodes, including vд . This gives us a DAG with the topological

ordering vд,vn,vn−1, . . . ,v2,v1.
For example 5.7, we have the following memory graph

6
:

5
For simplicity, we omit the ∆s from the compatibility and the typing judgements.

6
We omit the 0 weight edge from vд to v1.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 15

vд v3 v2 v1
1

1

2

1

2

For a heap compatible with some context, we can express the allowed usages of the assignee

variables in terms of the edge weights of its memory graph. Let us define the length of a path to be

the product of the weights along the path. Then, the allowed usage of a variable is the sum of the

lengths of all paths from the source node to the node corresponding to that variable. Note that this

is so for the example graph.

A path p from vд to vj represents a chain of references, with the last one being pointed at vj .
The length of p shows how many times this path is used to reference vj . The sum of the lengths of

all the paths from vд to vj then gives a (static) count of the total number of times location vj is
referenced. And this is equal to qj , the allowed usage of the assignment for vj in the heap. This

means that the allowed usage of an assignment is equal to the (static) count of the number of times

the concerned location is referenced. So, we also call qj the count of vj and call this property count

balance. Below, we present an algebraic formalization of this property of well-formed heaps.

Notation 5.9. We use 0 to denote a row vector of 0s of length n (when n is clear from the context)

and 0⊺ to denote a column vector of 0s.

For a well-formed heapH containing n assignments of the form xi

qi

7→ Γi ⊢ ai : Ai , we write ⟨H ⟩ to

denote the n×n matrix whose ith row is Γi ⋄0. We call ⟨H ⟩ the transformation matrix corresponding

to H . The transformation matrix for example 5.7 is:

©­«
0 0 0

2 0 0

1 2 0

ª®¬
For a well-formed heap H , the matrix ⟨H ⟩ is strictly lower triangular. Note that this is also the

adjacency matrix of the memory graph, excluding node vд . The strict lower triangular property of

the matrix corresponds to the acyclicity of the graph. With the matrix operations (over a semiring)

defined in the usual way, the count balance property is:

Lemma 5.10 (Count Balance). If H ⊢ ∆; Γ, then H = H × ⟨H ⟩ + Γ.

Proof. We show this by induction on H ⊢ ∆; Γ. The base case is trivial.

For the Cons-case, let H
′, x

q

7→ Γ2 ⊢ a : A ⊢ ∆′, x :A; Γ1, x :
q
A where H

′ ⊢ ∆′
; Γ1 + (q · Γ2). By

inductive hypothesis,H
′ = H

′×⟨H ′⟩+Γ1 + (q · Γ2). Therefore,H ′ ⋄q = H
′ ⋄q×

(⟨H ′⟩ 0⊺

Γ2 0

)
+Γ1 ⋄q. □

For example 5.7, we can check thatH =
(
7 3 1

)
satisfies the above equation. Let us understand

this equation. For a node vi in GH ,Γ , we can express the count qi in terms of the counts of the

incoming neighbours and the weights of the corresponding edges. We have, qi = Σj qjw(vj ,vi) +
w(vд,vi). The right-hand side of this equation represents static estimate of demand, the amount of

resources we shall need while the left-hand side represents static estimate of supply, the amount of

resources we shall have. So H ⊢ ∆; Γ is a static guarantee that the heap H shall supply the resource

demands of the context Γ.
Now if H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then we should be able to evaluate a in H without running

out of resources. This leads us to soundness theorem.

, Vol. 1, No. 1, Article . Publication date: November 2020.

16 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

5.8 Soundness

Theorem 5.11 (Soundness). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then either a is a value or there exists

Γ′, H ′
, u′, Γ4 such that for any S ⊇ dom∆:

• [H] a ⇒S [H
′
; u′ ; Γ4] a′

• H
′ ⊢ ∆, ⌊Γ4⌋; Γ

′

• ∆, ⌊Γ4⌋ ; Γ
′ ⊢ a′ : A

• Γ′ + u′ + 0⋄ Γ4 × ⟨H ′⟩ ≤ Γ ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ4

The soundness theorem
7
states that our computations can go forward with the available resources

without ever getting stuck. Note that as the term a steps to a′, the typing context changes from

Γ to Γ′. This is to be expected because during the step, resources from the heap may have been

consumed or new resources may have been added. For example, [x
1

7→ unit]x ⇒ [x
0

7→ unit]unit
and x :

1Unit ⊢ x : Unit while x :0Unit ⊢ unit : Unit. Though the typing context may change, the

new context, which type-checks the reduct, must be compatible with the new heap. This means

that we can apply the soundness theorem again and again until we reach a value. And at every step

of this evaluation, the dynamics of our language aligns perfectly with the statics of the language.

Graphically speaking, as the evaluation progresses, the weights in the memory graph change but

the count balance property is maintained.

Furthermore, the old context and the new context are related according to the fourth clause of

the theorem. For the moment being, let the partial order be restricted to the trivial reflexive order.

Then the equation stands as:

Γ′ + u′ + 0⋄ Γ0 × ⟨H ′⟩

= Γ ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ0

We can understand this equation through the following analogy. The contexts can be seen engaged

in a transaction with the heap. The heap pays the context 0⋄ Γ0 and gets 0⋄ Γ0 × ⟨H ′⟩ resources in

return. The context pays the heap u′ and gets u′ × ⟨H ′⟩ resources in return. The equation is the

“balance sheet" of this transaction.

For an arbitrary partial order, the transaction gets skewed in favour of the heap; meaning, the

context gets less from the heap for what it pays. This is so because the heap contains more resources

than is necessary; so it “throws away” the extra resources.

This soundness theorem subsumes ordinary type soundness. In fact, we can derive the ordinary

preservation and progress lemmas from this soundness theorem using bisimilarity of the two

reduction relations and the multi-substitution property.

Corollary 5.12. If � ; � ⊢ a : A and a ; b, then � ; � ⊢ b : A.

Proof. Since a ; b, for any S , we have, [�] a ⇒S [H ′
; u′ ; Γ′] b′ such that b

′{H ′} = b, by

lemma (5.6). Since � ; � ⊢ a : A and � ⊢ �;� and a is not a value, we have H , Γ, Γ4,Q,a
′
such that

H ⊢ ⌊Γ4⌋; Γ and [�] a ⇒S [H ; u ; Γ4] a′ and ⌊Γ4⌋ ; Γ ⊢ a′ : A, by soundness.

Now, since [�] a ⇒S [H
′
; u′ ; Γ′] b′ and [�] a ⇒S [H ; u ; Γ0] a′, determinism gives us b

′{H ′} =

a
′{H }. Since H ⊢ ⌊Γ4⌋; Γ and ⌊Γ4⌋ ; Γ ⊢ a

′
: A, by multi-substitution, we have, � ; � ⊢ a

′{H } : A.

But a
′{H } = b

′{H ′} and b
′{H ′} = b. Therefore, � ; � ⊢ b : A. □

Corollary 5.13. If � ; � ⊢ a : A, then a is a value or there exists b, such that a ; b.

7
We present the proof for its dependent counterpart later.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 17

Proof. Since � ; � ⊢ a : A and � ⊢ �;�, we have either a is a value or there exists H , Γ4,Q,a
′

such that [�] a ⇒S [H ; u ; Γ4] a′, in which case, by lemma (5.5), a ; a
′{H }. □

Next we apply the soundness theorem to derive some useful properties about usage.

6 APPLICATIONS

6.1 Irrelevance

Till now, we have developed our theory over an arbitrary partially-ordered semiring. But an

arbitrary semiring is too general a structure for deriving theorems we are interested in. For example,

the set {0, 1} with 1 + 1 = 0 and all other operations defined in the usual way is also a semiring.

But such a semiring does not capture our notion of usage since 0 is supposed to mean no usage

and 1 (whenever 1 , 0) is supposed to mean some usage. For 0 to mean no usage in a semiring

Q , the equation q + 1 = 0 must have no solution. We call an element q′ ∈ Q positive (respectively

positive-or-more) iff q′ = q + 1 (respectively q + 1 ≤ q′) for some q ∈ Q . The above condition

then means that 0 is not positive. If we also have a partial order, the constraint q + 1 ≤ 0 must be

unsatisfiable; meaning 0 should not be positive-or-more. We call this the zero-unusable criterion.

Henceforth, we restrict our attention to semirings that meet this criterion. The following lemmas

formalize the idea discussed here.

Lemma 6.1. In a zero-unusable semiring, if [H] a ⇒S [H ′
; u′ ; Γ4] a′ and xi

0

7→ Γi ⊢ ai : Ai ∈ H ,

then the component u′(xi) = 0 and xi

0

7→ Γi ⊢ ai : Ai ∈ H ′
.

We see above that locations with count 0 cannot be referenced during computation. Also, the

count for such locations always remains 0. Now, if they cannot be referenced, what they contain

should not matter. In other words, 0-graded variables do not affect the result of computation. Two

initial configurations that differ only in the assignments for some 0-graded variables produce

identical results. This means that such assignments do not interfere with the evaluation and are

irrelevant.

Lemma 6.2 (Zero non-interference). Let Hi 1 = xi

0

7→ Γ1 ⊢ a1 : A1 and Hi 2 = xi

0

7→ Γ2 ⊢ a2 : A2.

Then, in a zero-unusable semiring, if [H1,Hi 1,H2] b ⇒S ∪ fv a2
[H ′

1
,Hi 1,H

′
2
; u′ ; Γ4] b′,

then [H1,Hi 2,H2] b ⇒S ∪ fv a1
[H ′

1
,Hi 2,H

′
2
; u′ ; Γ4] b′.

Note that not just 0-graded resources may be unusable, any s-graded resource for which the

constraint q + 1 ≤ s is unsatisfiable is unusable. With respect to the security semirings described in

Section 3.2, this means that data from any security level s for which 1 ≰ s is unusable. This makes

sense since the default view of the type system is 1 or Public so that data judged to be more secure

(or incomparable) cannot be used at this level. This gives us the following lemma for the class of

security lattices described in Section 3.2:

Lemma 6.3 (s non-interference). Let 1 ≰ s in a security lattice. Let Hi 1 = xi

s

7→ Γ1 ⊢ a1 : A1 and

Hi 2 = xi

s

7→ Γ2 ⊢ a2 : A2. If [H1,Hi 1,H2] b ⇒S ∪ fv a2
[H ′

1
,Hi 1,H

′
2
; u′ ; Γ4] b′,

then [H1,Hi 2,H2] b ⇒S ∪ fv a1
[H ′

1
,Hi 2,H

′
2
; u′ ; Γ4] b′.

6.2 Garbage collection

Now let us look at locations with count 0 in memory graphs. The sum of the lengths of all paths

from the source node to such a node must be 0. The zero-unusable criterion, along with the count

balance property, implies that none of these paths has a positive-or-more length. This means that

all the edge-weights in any such path cannot be positive-or-more.

, Vol. 1, No. 1, Article . Publication date: November 2020.

18 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

The condition that 0 is not positive-or-more is a weaker version of a well-known constraint put

on semirings. If 0 is a minimal element, then a stronger constraint is zerosumfree
8
. A semiring Q is

said to be zerosumfree if for any q1,q2 ∈ Q , the equation q1 +q2 = 0 implies q1 = q2 = 0. If we work

with a zerosumfree semiring with 0 as a minimal element, we know that the length of any path

from the source node to a node with count 0 is 0. But all the edge-weights along such a path may

be non-zero. This is so because the product of two non-zero elements may be 0. If we disallow this,

then there is no path from the source node to such a node (0 weight edges are omitted). Semirings

which satisfy q1 · q2 = 0 =⇒ q1 = 0 or q2 = 0 are called entire
9
. With these constraints on the

semiring, we have the following lemma:

Lemma 6.4. In a zerosumfree, entire semiring with 0 as a minimal element, if H ⊢ ∆; Γ and

xi

0

7→ Γi ⊢ ai : Ai ∈ H , then vi (the node corresponding to xi) belongs to an isolated subgraph (ofGH ,Γ)

that does not contain the source node.

The lemma above says that all the 0-count assignments lie in isolated islands disconnected from

the line of computation. So at any point, it is safe to garbage collect all such assignments.

6.3 Linearity

Let us now look at linearity. Just having a 1 in the semiring is not enough to capture our notion

of linearity. For example, 1 does not really represent linear usage in the boolean semiring since

1 + 1 = 1. If 1 must mean linear usage, then it cannot be equal to or greater than the successor of

any quantity other than 0, where successor of q is defined as q + 1. Formally, the pair of constraints:

q + 1 ≤ 1 and q , 0 must have no solution. We call this the one-linear criterion. In semirings that

meet the zero-unusable and one-linear criteria, 1 represents single usage.

Mirroring our discussion on 0-usage, we strengthen the one-linear criterion to derive a useful

property about nodes with a count of 1 in memory graphs. Let us call semirings obeying the

following constraints linear:

• q1 + q2 = 1 =⇒ q1 = 1 and q2 = 0 or q1 = 0 and q2 = 1

• q1 · q2 = 1 =⇒ q1 = q2 = 1

For entire, zerosumfree, linear semirings with 0 and 1 as minimal elements, we have the following

property:

Lemma 6.5 (Quantitative single-pointer property). If H ⊢ ∆; Γ and xi

1

7→ Γi ⊢ ai : Ai ∈ H ,

then inGH ,Γ , there is a single path p from the source node to vi and all the weights on p are 1. Further,

for any node vj on p, the subpath is the only path from the source node to vj .

Along with the soundness theorem, this gives us a quantitative version of the single pointer

property. In words, it means that there is one and only one way to reference a linear resource; any

resource along the way has a single pointer to it. This property would enable one to carry out safe

in-place update for linear resources.

Now that we have explored a graded simple type system, we move on to dependent types.

8
Our terminology follows Golan [1999].

9
The zerosumfree property is sometimes called “positive” and the entire property is sometimes called the “zero-product”

property.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 19

7 GRADED DEPENDENT TYPES

In this section we define GraD, a language with graded dependent types. First, the syntax: GraD

uses a single syntactic category for terms and types.

terms, types a,b,A,B ::= type | x

| Unit | unit | let unit = a in b

| Πx :qA.B | λx :qA.a | a b

| Σx:qA.B | (a, b) | let (x,y) = a in b
| A ⊕ B | inj

1
a | inj

2
a | caseq a of b1; b2

7.1 Type system

The rules of this type system, shown in Figure 3 on page 20, are inspired by the Pure Type Systems

of Barendregt [Barendregt 1993]. However, for simplicity, this system includes only a single sort,

type and a single axiom type : type.10 We annotate Barendregt’s system with quantities, as well as

add the unit type, sums and sigma types.

The key idea of this design is that quantities only count the runtime usage of variables. In a

judgement ∆ ; Γ ⊢ a : A, the quantities recorded in Γ should be derived only from the parts of a

that are needed during computation. All other uses of these variables, whether in the type A, in

irrelevant parts of a, or in types that appear later in the context, should not contribute to this count.

This distinction is significant because in a dependently-typed system terms may appear in types.

As a result, the typing rules must ensure that both terms and types are well-formed during type

checking. Therefore, the type system must include premises of the form ∆ ; Γ ⊢ A : type, that hold
when A is a well-formed type. But how to account for the usages in Γ?

What this means for the type system is that any usage of a context to check an irrelevant

component should be multiplied by 0, just like the irrelevant argument in example 4.6. For example,

in the rule for variables rule T-Var, any uses of the context Γ to check the type A are discarded

(multiplied by 0) in the resulting derivation. Similarly, in the rule for weakening, we check that

the type of the weakened variable is well-formed using some context Γ2 that is compatible with

the Γ1 (same ∆). But Γ2 doesn’t appear in the result of the rule because, for simplicity, we use the

simpler Γ1 instead of the equivalent Γ1 + 0 · Γ2. Many rules follow this pattern of checking types

with some usage-unconstrained context, including Γ2 in rule T-convert and rule T-lam, and Γ3 in
rule T-UnitElim.This last rule implements a form of dependent pattern matching. In this rule, the

type of the branch can observe that the eliminated term a is equal to the pattern unit. To support

this refinement, the result type B must type check with a free variable y of an appropriate type.

Irrelevant quantification. Now consider the rule T-pi.

T-pi

∆ ; Γ1 ⊢ A : type
∆, x:A ; Γ2, x :

r
A ⊢ B : type

∆ ; Γ1 + Γ2 ⊢ Πx :qA.B : type

In particular, note that the usage annotated on the type itself (q) is different from r , which records

how many times x is used in B. The annotation q tracks the usage of the argument in the body of

a function with this type and this usage may have no relation to the usage of x in the type itself.

This difference between q and r allows GraD to represent parametric polymorphism by marking

10
This definition corresponds to λ∗, which is ‘inconsistent’ in the sense that all types are inhabited. However, this incon-

sistency does not interfere with the syntactic properties of the system that we are interested in as a core for Dependent

Haskell.

, Vol. 1, No. 1, Article . Publication date: November 2020.

20 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

∆ ; Γ ⊢ a : A (Typing rules for GraD, a graded dependent type system)

T-sub

∆ ; Γ1 ⊢ a : A Γ1 ≤ Γ2

∆ ; Γ2 ⊢ a : A

T-weak

x < dom∆
∆ ; Γ1 ⊢ a : B

∆ ; Γ2 ⊢ A : type

∆, x:A ; Γ1, x :
0
A ⊢ a : B

T-convert

∆ ; Γ1 ⊢ a : A

∆ ; Γ2 ⊢ B : type A ≡ B

∆;Γ1 ⊢ a : B

T-type

� ; � ⊢ type : type

T-var

x < dom∆
∆ ; Γ ⊢ A : type

∆, x:A ; 0 · Γ, x :1A ⊢ x : A

T-Unit

� ; � ⊢ Unit : type

T-unit

� ; � ⊢ unit : Unit

T-UnitElim

∆ ; Γ1 ⊢ a : Unit
∆ ; Γ2 ⊢ b : B{unit/y}

∆, y:Unit ; Γ3, y :r Unit ⊢ B : type

∆;Γ1 + Γ2 ⊢ let unit = a in b : B{a/y}

T-pi

∆ ; Γ1 ⊢ A : type
∆, x:A ; Γ2, x :

r
A ⊢ B : type

∆ ; Γ1 + Γ2 ⊢ Πx :qA.B : type

T-lam

∆, x:A ; Γ1, x :
q
A ⊢ a : B

∆ ; Γ2 ⊢ A : type

∆ ; Γ1 ⊢ λx :
q
A.a : Πx :qA.B

T-app

∆ ; Γ1 ⊢ a : Πx :qA.B
∆ ; Γ2 ⊢ b : A

∆ ; Γ1 + q · Γ2 ⊢ a b : B{b/x}

T-Sigma

∆ ; Γ1 ⊢ A : type
∆, x:A ; Γ2, x :

r
A ⊢ B : type

∆ ; Γ1 + Γ2 ⊢ Σx:qA.B : type

T-Tensor

∆ ; Γ1 ⊢ a : A

∆ ; Γ2 ⊢ b : B{a/x}

∆, x:A ; Γ3, x :
r
A ⊢ B : type

∆ ; q · Γ1 + Γ2 ⊢ (a, b) : Σx:
q
A.B

T-SigmaElim

∆ ; Γ1 ⊢ a : Σx:qA1.A2

∆, x:A1, y:A2 ; Γ2, x :
q
A1, y :

1
A2 ⊢ b : B{(x, y)/z}

∆, z:(Σx:qA1.A2) ; Γ3, z :
r (Σx:qA1.A2) ⊢ B : type

∆ ; Γ1 + Γ2 ⊢ let (x,y) = a in b : B{a/z}

T-sum

∆ ; Γ1 ⊢ A1 : type
∆ ; Γ2 ⊢ A2 : type

∆ ; Γ1 + Γ2 ⊢ A1 ⊕ A2 : type

T-inj1

∆ ; Γ ⊢ a : A1

∆ ; Γ1 ⊢ A2 : type

∆ ; Γ ⊢ inj
1
a : A1 ⊕ A2

T-inj2

∆ ; Γ ⊢ a : A2

∆ ; Γ1 ⊢ A1 : type

∆ ; Γ ⊢ inj
2
a : A1 ⊕ A2

T-CaseElim

1 ≤ q

∆ ; Γ1 ⊢ a : A1 ⊕ A2

∆ ; Γ2 ⊢ b1 : Πx :
q
A1.B{inj1 x/y}

∆ ; Γ2 ⊢ b2 : Πx :
q
A2.B{inj2 x/y}

∆, y:A1 ⊕ A2 ; Γ3, y :
r
A1 ⊕ A2 ⊢ B : type

∆;q · Γ1 + Γ2 ⊢ caseq a of b1; b2 : B{a/y}

Fig. 3. Typing rules for dependent, quantitative type system

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 21

type arguments with usage 0. For example, the analogue of the System F type ∀α .α → α , can be

expressed in this system as Πx :0 type.1x → x. This type is well-formed because, even though the

annotation on the variable x is 0, that rule allows x to be used any number of times in the body of

the type.

Some versions of irrelevant quantifiers in type theories constrain r to be equal to q [Abel and

Scherer 2012]. By coupling the usage of variables in body of the abstraction with the result type

of the Π, these systems rule out the representation of polymorphic types, such as the one shown

above.
11
Here, we can model this more restricted form of quantifier with the assistance of the box

modality. If, instead of using the type Πx :0 A.B, we use the type Πx :1 20
A.B, we can force the

result type to also make no (relevant) use of the argument within B. The box x can be unboxed as

many times as desired, but each unboxing must be used exactly 0 times.

It is this distinction between the types Πx :0 A.B and Πx :1 (20
A).B (and a similar distinction

between Σx:0A.B and Σx:1(20
A).B) that motivates our inclusion of the usage annotation on the Π

and Σ types directly. In the simple type system, we can derive usage-annotated functions from linear

functions and the box modality: there is no need to annotate any arrow with any quantity other

than 1. But here, due to dependency, we cannot have polymorphic types without this additional

form. On the other hand, with the presence of usage-annotated Σ-types, we do not need to include

the box modality. Instead, we can encode the type 2q
A using the non-dependent tensor Σx:qA.Unit.

Thus, we can eliminate this special form from the language.

7.2 Metatheory

We have proven, in Coq, the following properties about the dependently-typed system.

First, well-formed terms have well-formed types. However, the resources used by such types are

unrelated to those of the terms.

Lemma 7.1 (Regularity). If ∆ ; Γ ⊢ a : A then there exists some Γ′ such that ∆ ; Γ′ ⊢ A : type.

Next, we generalize the substitution lemma for the simple version to this system, by propagating

it through the context and type.

Lemma 7.2 (Substitution). If ∆1 ; Γ ⊢ a : A and ∆1, x :A,∆2 ; Γ1, x :
q
A, Γ2 ⊢ b : B then

∆1,∆2{a/x} ; (Γ1 + q · Γ), Γ2{a/x} ⊢ b{a/x} : B{a/x}.

Furthermore, even though we have an explicit weakening rule in this system, we also show that

we can weaken with a zero-annotated fresh variable anywhere in the judgement.

Lemma 7.3 (Weakening). If ∆1,∆2 ; Γ1, Γ2 ⊢ a : A and ∆1 ; Γ3 ⊢ B : type then ∆1, x:B,∆2 ; Γ1, x :
0

B, Γ2 ⊢ a : A.

The small-step relation for this language is identical to that of the simply typed version.

Theorem 7.4 (Preservation). If ∆ ; Γ ⊢ a : A and a ; a
′
then ∆ ; Γ ⊢ a′ : A.

Theorem 7.5 (Progress). If � ; � ⊢ a : A then either a is a value or there exists some a
′
such that

a ; a
′
.

Now we develop the heap semantics for the dependent version.

11
Nuyts et al. [2017] introduces specialized quantifiers for polymorphic types that capture the restrictions necessary for

strong logical reasoning principles, such as internalized parametricity.

, Vol. 1, No. 1, Article . Publication date: November 2020.

22 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

8 HEAP SEMANTICS FOR GRAD

The presence of dependent types causes one issue with the heap semantics: because substitutions

are delayed through the heap, the terms and their types can “get out of sync”.

For example, if we have the application of a polymorphic identity function λx :0 type.λy :1 x .y
to some type argument Unit, then the result should have type Πy :1Unit.Unit. By the rule Small-

AppBeta, we have, [�] (λx :
0 type.λy :

1
x .y)Unit ⇒ [x

0

7→ Unit] λy :
1
x .y. Since x = Unit, we

see that λy :1 x .y can be assigned the type Πy :1Unit.Unit. So to align the types of the redex and

the reduct, we need to know about the new assignments loaded into the heap. This issue did not

exist in the simple setting since the types did not depend on term variables. Since this is not a

usage-related issue, any heap-based reduction relation that delays substitution will need to address

it while proving soundness. But the good news is that it can be resolved with a simple extension to

the type system.

8.1 A dependently-typed language with definitions

We extend our type-system with definitions that mimic delayed substitutions. These definitions

are used only in deriving type equalities. From the type system perspective, they are essentially a

bookkeeping device added to enable reasoning with respect to the heap semantics.

usage contexts Γ ::= � | Γ, x :qA | Γ, x=a :qA
contexts ∆ ::= � | ∆, x:A | ∆, x=a :A

Along with this extension to the grammar, we modify the conversion rule and add two new

typing rules to the system, as shown below. (Here, A{∆} denotes the type obtained by substituting

in A, in reverse order, the definiens in place of the variables for the definitions in ∆.)

∆ ; Γ ⊢ a : A (Typing rules for dependent system with definitions)

T-conv

∆ ; Γ1 ⊢ a : A

∆ ; Γ2 ⊢ B : type
A{∆} ≡ B{∆}

∆ ; Γ1 ⊢ a : B

T-def

x < dom∆
∆ ; Γ ⊢ a : A

∆, x=a :A ; 0 · Γ, x=a :1A ⊢ x : A

T-weak-def

x < dom∆
∆ ; Γ1 ⊢ b : B

∆ ; Γ2 ⊢ a : A

∆, x=a :A ; Γ1, x=a :
0
A ⊢ b : B

The definitions act like usual variable assumptions: rule T-def and rule T-weak-def mirror

rule T-var and rule T-weak respectively. They are applied only during the conversion rule T-conv

that substitutes out these definitions before comparing for β-equivalence. This modified rule means

that the term λy :1 x .y can be given the type Πy :1Unit.Unit in a context that defines x to be Unit.
The type system with these modifications has the same syntactic soundness properties as shown

in Section 7.2. Furthermore, because definitions only act on types, definitions do not add extra

resource demands to the typing derivation. (They just help in deriving more type equalities.) As a

result, we can always convert a normal variable assumption to include some definition as long as

the definition type checks. Furthermore, the resources used by the definition, called Γ below, are

unimportant.

Lemma 8.1 (InsertEq). If ∆1, x :A,∆2 ; Γ1, x :
q
A, Γ2 ⊢ b : B and ∆1 ; Γ ⊢ a : A, then ∆1, x = a :

A,∆2 ; Γ1, x=a :
q
A, Γ2 ⊢ b : B.

New (unused) definitions also admit a weakening property, analogous to Lemma 7.3.

Lemma 8.2 (Weakening with Definitions). If ∆1,∆2 ; Γ1, Γ2 ⊢ b : B and ∆1 ; Γ ⊢ a : A then

∆1, x=a :A,∆2 ; Γ1, x=a :
0
A, Γ2 ⊢ b : B.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 23

Because we have modified the contexts to include definitions, we must similarly modify the

heap semantics. For the reduction rules that load new assignments into the heap, we need the

context of new variables (Γ4) to remember their assignments. For example, the rule Small-AppBeta

is modified as below.

[H] a ⇒
q

S
[H ′

; u′ ; Γ4] a′ (SmallStep with definitions)

Small-DAppBeta

x < VarH ∪ fv b ∪ fv a − {y} ∪ S

a
′ = a{x/y}

[H] (λy :qA′.a) b ⇒r

S
[H, x

r ·q
7→ Γ ⊢ b : A ; 0 |H | ⋄0 ; x=b :r ·qA] a′

Similarly, we also need modify the heap compatibility relation to track more information. We

replace rule Compat-Cons with the following.

H ⊢ ∆; Γ (Compatibility with definitions)

Compat-ConsDef

H ⊢ ∆; Γ1 + (q · Γ2)
∆ ; Γ2 ⊢ a : A

x < domH

H, x
q

7→ Γ2 ⊢ a : A ⊢ ∆, x=a :A; Γ1, x=a :
q
A

These are all the changes we need. Since the context of new variables does not play a major role in

the step relation, all the lemmas about this relation hold. But with dependency, themulti-substitution

lemma needs to be modified to also substitute into the type (as well as the term).

Lemma 8.3 (Multi-substitution). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then � ; � ⊢ a{H } : A{H }.

Before moving further, let us reflect how the original typing and heap compatibility judgements

relate to their extended counterparts. For the sake of distinction, let us denote the original relations

by ⊢o . Now, for H ⊢o ∆; Γ, let ∆H and ΓH be ∆ and Γ respectively with their variables defined

according to (assignments in) H . Also, let HH denote H with the variables in the embedded contexts

in H defined according to H . Then, we have:

Lemma 8.4 (Elaboration). If H ⊢o ∆; Γ and ∆ ; Γ ⊢o a : A, then HH ⊢ ∆H ; ΓH and ∆H ; ΓH ⊢ a : A.

By virtue of this elaboration, soundness for the extended system implies soundness for the

original.

8.2 Proof of the heap soundness theorem

Nowwe can prove the heap soundness theorem for GraD. However, we first state some subordinate

lemmas that are required in the proof.

Lemma 8.5. If H ⊢ ∆; Γ and Γ′ ≤ Γ, then there exists H ′
such that H

′ ⊢ ∆; Γ′ and H ′ ≤ H .

We can insert new (unused) definitions into the heap.

Lemma 8.6 (SmallStep weakening). If [H1,H2] a ⇒r

S ∪{x }
[H ′

1
,H ′

; u1 ⋄u ; Γ4] a′ and |H ′
1
| =

|u1 | = |H1 | and x < domH1,H2, then

[H1, x
q

7→ Γ1 ⊢ a1 : A1,H2] a ⇒r

S
[H ′

1
, x

q

7→ Γ1 ⊢ a1 : A1,H
′
; u′

1
⋄0⋄u ; Γ4] a′

, Vol. 1, No. 1, Article . Publication date: November 2020.

24 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

Lemma 8.7 (Compatibility weakening). If

H1,H2 ⊢ ∆,∆′
; ((r · Γ11) + Γ0), Γ1 and ∆ ; Γ11 ⊢ a : A and |H1 | = |Γ0 | = |∆| and x < domH1,H2,

then there is some H
′
2
that is the same as H2 modulo weakening of embedded contexts, such that

H1, x
r

7→ Γ11 ⊢ a : A,H ′
2
⊢ ∆, x=a :A,∆′

; Γ0, x=a :
r
A, Γ1

The soundness theorem follows as an instance of the invariance lemma below. The lemma

provides a strong enough hypothesis for the induction to go through.

Lemma 8.8 (Invariance). If H ⊢ ∆; Γ0 + q · Γ and ∆ ; Γ ⊢ a : A and 1 ≤ q and dom∆ ⊆ S, then

either a is a value or there exists Γ′, H ′
, u′, Γ4 and a′ such that:

• [H] a ⇒
q

S
[H ′

; u′ ; Γ4] a′

• H
′ ⊢ ∆, ⌊Γ4⌋; (Γ0, 0 · Γ4) + q · Γ

′

• ∆, ⌊Γ4⌋ ; Γ
′ ⊢ a′ : A

• q · Γ′ + u′ + 0⋄ Γ4 × ⟨H ′⟩ ≤ q · (Γ ⋄0) + u′ × ⟨H ′⟩ + 0⋄ Γ4
• dom Γ4 is disjoint from S

Proof. Let H ⊢ ∆; Γ0 + q · Γ and ∆ ; Γ ⊢ a : A. We prove this lemma by induction on the typing

judgement ∆ ; Γ ⊢ a : A.

• rule T-sub

Let ∆ ; Γ2 ⊢ a : A where ∆ ; Γ1 ⊢ a : A and Γ1 ≤ Γ2. Further, H ⊢ ∆; Γ0 + q · Γ2.

Since H ⊢ ∆; Γ0 + q · Γ2 and Γ1 ≤ Γ2, by lemma 8.5, there exists H ′
such that H

′ ⊢ ∆; Γ0 + q · Γ1
and H ′ ≤ H . By inductive hypothesis, [H ′] a ⇒

q

S
[H ′′

; u ; Γ4] a′′. Since H ′ ≤ H , we have,

[H] a ⇒
q

S
[H ′′

; u ; Γ4] a′′. The remaining clauses follow from the inductive hypothesis and

the fact that Γ1 ≤ Γ2.
• We don’t need to consider the rule T-var and rule weak cases since for H ⊢ ∆; Γ, any variable
x ∈ dom ∆ should be a definition of the form x=a :A.

• rule T-def

Let ∆, x = a : A ; 0 · Γ, x = a :
1
A ⊢ x : A where ∆ ; Γ ⊢ a : A and x < dom∆. Further,

H ⊢ ∆, x=a :A; Γ0+q · (0 · Γ, x=a :
1
A). Let Γ0 = Γ′

0
, x=a :r A. So H ⊢ ∆, x=a :A; Γ′

0
, x=a :(r+q)A.

Therefore, H = H1, x
(r+q)
7→ Γ11 ⊢ a : A where ∆ ; Γ11 ⊢ a : A.

Since 1 ≤ q, we have, [H1, x
(r+q)
7→ Γ11 ⊢ a : A] x ⇒

q

S
[H1, x

r

7→ Γ11 ⊢ a : A ; 0 |H1 | ⋄q ; �] a. We

have, H1, x
r

7→ Γ11 ⊢ a : A ⊢ ∆, x = a :A; (Γ′
0
, x = a :r A) + q · (Γ11, x = a :

0
A). By weakening,

we have, ∆, x = a : A ; Γ11, x = a :
0
A ⊢ a : A. The fourth clause: q · (Γ11 ⋄0) + (0⋄q) ≤

0⋄q + (0⋄q) ×
(⟨H1 ⟩ 0⊺

Γ11 0

)
follows by reflexivity.

• rule T-weak-def

Let ∆, x = a : A ; Γ, x = a :
0
A ⊢ b : B where ∆ ; Γ ⊢ b : B and ∆ ; Γ9 ⊢ a : A and

x < dom∆. Further, H ⊢ ∆, x = a : A; Γ0 + q · (Γ, x = a :
0
A). Let Γ0 = Γ′

0
, x = a :

r
A. So

H ⊢ ∆, x=a :A; Γ′
0
+ q · Γ, x=a :r A. Therefore, H = H1, x

r

7→ Γ11 ⊢ a : A where ∆ ; Γ11 ⊢ a : A.

Also, H1 ⊢ ∆; Γ′
0
+ q · Γ + r · Γ11.

Applying the inductive hypothesis, we get, [H1] b ⇒
q

S ∪{x }
[H ′

1
,H4 ; u1 ⋄u4 ; Γ4] b′ andH ′

1
,H4 ⊢

∆, ⌊Γ4⌋; (Γ
′
0
+ r · Γ11, 0 · Γ4)+ q · (Γ

′, Γ′′) and ∆, ⌊Γ4⌋ ; Γ
′, Γ′′ ⊢ b′ : B. Here, |H ′

1
| = |u1 | = |Γ′ | =

|H1 | = |∆|. Since x does not appear in H4, by 8.7 we have some H
′
4
that is same as H4 modulo

weakening of embedded contexts, such that H
′
1
, x

r

7→ Γ11 ⊢ a : A,H ′
4
⊢ ∆, x=a :A, ⌊Γ4⌋; (Γ

′
0
, x=

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 25

a :
r
A, 0 · Γ4)+q · (Γ

′, x=a :0A, Γ′′). Because embedded contexts do not impact the small step re-

lation, we have, by 8.6, [H1, x
r

7→ Γ11 ⊢ a : A] b ⇒
q

S
[H ′

1
, x

r

7→ Γ11 ⊢ a : A,H ′
4
; u1 ⋄ 0⋄u4 ; Γ4] b′.

Also, by weakening, ∆, x = a :A, ⌊Γ4⌋ ; Γ
′, x = a :0 A, Γ′′ ⊢ b

′
: B. The fourth clause follows

from the inductive hypothesis by inserting 0 at the |∆|-position on both sides.

• rule T-app

Let ∆ ; Γ1 + r · Γ2 ⊢ b a : B{a/x} where ∆ ; Γ1 ⊢ b : Πx :r A.B and ∆ ; Γ2 ⊢ a : A. Further,

H ⊢ ∆; Γ0 + q · (Γ1 + r · Γ2). Now, there are two cases to consider depending on whether b is a

value or not.

– b is not a value.

In this case, we get from the inductive hypothesis, [H] b ⇒
q

S ∪ fv a
[H ′

; u′ ; Γ4] b′ and
∆, ⌊Γ4⌋ ; Γ

′
1
⊢ b

′
: Πx :r A.B and H

′ ⊢ ∆, ⌊Γ4⌋; (Γ0 + (q · r) · Γ2, 0 · Γ4) + q · Γ
′
1
. So [H] b a ⇒

q

S

[H ′
; u′ ; Γ4] b′ a By weakening, we get, ∆, ⌊Γ4⌋ ; Γ2, 0 · Γ4 ⊢ a : A. Therefore, by App,

we have, ∆, ⌊Γ4⌋ ; Γ
′
1
+ r · (Γ2, 0 · Γ4) ⊢ b

′
a : B{a/x}. Also, by rearranging, we get H

′ ⊢

∆, ⌊Γ4⌋; (Γ0, 0 · Γ4)+ q · (Γ
′
1
+ r · (Γ2, 0 · Γ4)). The fourth clause follows from the corresponding

clause of inductive hypothesis.

– b is a value.

Since b has a Π-type, it must be headed by a λ. Let b = λx :
r
A
′.b1. By inversion,

∆, x:A ; Γ, x :r A ⊢ b1 : B and A
′{∆} ≡ A{∆}. Renaming x as y, where y is fresh enough, we

have,∆, y:A ; Γ, y :r A ⊢ b1{y/x} : B{y/x}. By lemma 8.1,∆, y=a :A ; Γ, y=a :r A ⊢ b1{y/x} :

B{y/x}. Now, we have, [H] (λx :r A′.b1) a ⇒
q

S
[H, y

(q ·r)
7→ Γ2 ⊢ a : A ; 0 ; y=a :(q ·r)A] b1{y/x}.

But since H ⊢ ∆; Γ0 + q · Γ1 + (q · r) · Γ2, we get, H, y
(q ·r)
7→ Γ2 ⊢ a : A ⊢ ∆, y=a :A; (Γ0, y=a :

0

A) + q · (Γ1, y=a :
r
A).

By regularity, we know that ∆ ; Γ′ ⊢ B{a/x} : type. By weakening, ∆, y=a :A ; Γ′, y=a :0

A ⊢ B{a/x} : type. But since B{y/x}{∆, y=a :A} = (B{a/x}){∆, y=a :A}, by conversion,

∆, y=a :A ; Γ, y=a :r A ⊢ b1{y/x} : B{a/x}. The fourth clause: q · (Γ1 ⋄ r)+ 0+ (0⋄(q · r)) ×(⟨H ⟩ 0⊺

Γ2 0

)
≤ q · Γ1 + r · Γ2 ⋄0 + 0 + (0⋄(q · r)) follows by reflexivity.

• rule T-conv

Let ∆ ; Γ ⊢ a : B where ∆ ; Γ ⊢ a : A and ∆ ; Γ1 ⊢ B : type and A{∆} ≡ B{∆}. Fur-
ther, H ⊢ ∆; Γ0 + q · Γ. Therefore, by inductive hypothesis, [H] a ⇒

q

S
[H ′

; u′ ; Γ4] a′ and
∆, ⌊Γ4⌋ ; Γ

′ ⊢ a′ : A and H
′ ⊢ ∆, ⌊Γ4⌋; (Γ0, 0 · Γ4) + q · Γ

′
.

Now, since fvA ⊆ dom∆ and fv B ⊆ dom∆; we have, A{∆, ⌊Γ4⌋} = A{∆} and B{∆, ⌊Γ4⌋} =
B{∆}. Therefore, ∆, ⌊Γ4⌋ ; Γ

′ ⊢ a′ : B. The other clauses follow from the inductive hypothesis.

• rule T-UnitElim

Let ∆ ; Γ1 + Γ2 ⊢ let unit = a in b : B{a/y} where ∆ ; Γ1 ⊢ a : Unit and ∆ ; Γ2 ⊢ b : B{unit/y}
and ∆, y:Unit ; Γ, y :r Unit ⊢ B : type. Further, H ⊢ ∆; Γ0 + q · (Γ1 + Γ2). Now, there are two
cases to consider depending on whether a is a value or not.

– a is not a value.

In this case, we get from the inductive hypothesis, [H] a ⇒
q

S ∪ fv b∪{y }
[H ′

; u ; Γ4] a′

and ∆, ⌊Γ4⌋ ; Γ′
1
⊢ a

′
: Unit and H

′ ⊢ ∆, ⌊Γ4⌋; ((Γ0 + q · Γ1), 0 · Γ4) + q · Γ′
1
. Therefore,

[H] let unit = a in b ⇒
q

S
[H ′

; u ; Γ4] let unit = a
′ in b. By weakening and UnitE, we have,

∆, ⌊Γ4⌋ ; Γ
′
1
+ (Γ2, 0 · Γ4) ⊢ let unit = a

′ in b : B{a′/y}.

Now, by regularity, ∆ ; Γ′ ⊢ B{a/y} : type. By weakening, ∆, ⌊Γ4⌋ ; Γ′, 0 ·Γ4 ⊢ B{a/y} : type.
But then, B{a/y}{∆, ⌊Γ4⌋} = B{a/y}{∆} = B{∆}{a{∆}/y}. Also, B{a′/y}{∆, ⌊Γ4⌋} =

, Vol. 1, No. 1, Article . Publication date: November 2020.

26 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

B{∆, ⌊Γ4⌋}{a
′{∆, ⌊Γ4⌋}/y} = B{∆}{a′{∆, ⌊Γ4⌋}/y}. By bisimilarity, they are definitionally

equivalent and hence ∆, ⌊Γ4⌋ ; Γ
′
1
+ (Γ2, 0 · Γ4) ⊢ let unit = a

′ in b : B{a/y}. The fourth

clause: q · (Γ′
1
+ (Γ2 ⋄0)) + u + (0⋄ Γ4) × ⟨H ′⟩ ≤ q · ((Γ1 + Γ2) ⋄0) + u × ⟨H ′⟩ + 0⋄ Γ4 follows

from the inductive hypothesis.

– a is a value.

Since a has type Unit, we have, a = unit and 0 · Γ ≤ Γ1, for some Γ. Now, [H] let unit =
unit in b ⇒

q

S
[H ; 0 ; �] b. By sub-usaging, ∆ ; Γ1 + Γ2 ⊢ b : B{unit/y}. The fourth clause:

q · (Γ1 + Γ2) ≤ q · (Γ1 + Γ2) follows by reflexivity.

• rule T-CaseElim

Let ∆ ; r · Γ1 + Γ2 ⊢ caser a of b1; b2 : B{a/y} where ∆ ; Γ1 ⊢ a : A1 ⊕ A2 and ∆ ; Γ2 ⊢ b1 : Πx :
r

A1.B{inj1 x/y} and ∆ ; Γ2 ⊢ b2 : Πx :
r
A2.B{inj2 x/y} and ∆, y:A1 ⊕ A2 ; Γ, y :

s
A1 ⊕ A2 ⊢ B :

type. Further, H ⊢ ∆; Γ0 + q · (r · Γ1 + Γ2). Now, there are two cases to consider depending on

whether a is a value or not.

– a is not a value.

By inductive hypothesis, we get [H] a ⇒
q ·r

S ∪ fv b1 ∪ fv b2 ∪{y }
[H ′

; u ; Γ4] a′ and ∆, ⌊Γ4⌋ ; Γ
′
1
⊢

a
′
: A1⊕A2 andH

′ ⊢ ∆, ⌊Γ4⌋; ((Γ0+q ·Γ2), 0·Γ4)+(q ·r)·Γ
′
1
. Therefore, [H] caser a of b1; b2 ⇒

q

S

[H ′
; u ; Γ4] caser a′ of b1; b2. By weakening and using case thereafter, we get, ∆, ⌊Γ4⌋ ; r ·

Γ′
1
+ (Γ2, 0 · Γ4) ⊢ caser a′ of b1; b2 : B{a′/y}. By following the argument presented before,

∆, ⌊Γ4⌋ ; r · Γ
′
1
+ (Γ2, 0 · Γ4) ⊢ caser a′ of b1; b2 : B{a/y}.

By inductive hypothesis, ((q · r) · Γ′
1
+u)+Γ4× ⟨H ′⟩ ≤ (q · r) · (Γ1 ⋄0)+u× ⟨H ′⟩+0⋄ Γ4. From

this, we have, (q · (r · Γ′
1
+ (Γ2, 0 · Γ4))+u)+Γ4×⟨H ′⟩ ≤ q · ((r · Γ1 + Γ2) ⋄0)+u×⟨H ′⟩+0⋄ Γ4.

– a is a value.

Sincea has typeA1⊕A2, so a = inj
1
a1 or a = inj

2
a2. Let a = inj

1
a1. Now, [H] caser (inj1 a1) of b1; b2 ⇒

q

S

[H ; 0 ; �] b1 a1. By inverting the typing judgement, we have ∆ ; Γ1 ⊢ a1 : A1. By App,

∆ ; Γ2 + r · Γ1 ⊢ b1 a1 : B{inj1 a1/y}. The fourth clause follows by reflexivity.

The other case follows similarly.

• rule T-SigmaElim

Let ∆ ; Γ1 + Γ2 ⊢ let (x,y) = a in b : B{a/z} where ∆ ; Γ1 ⊢ a : A and ∆, x:A1, y:A2 ; Γ2, x :
r

A1, y :
1
A2 ⊢ b : B{(x, y)/z} and ∆, z:A ; Γ, z :s A ⊢ B : type. Here, A = Σx :rA1.A2. Further,

H ⊢ ∆; Γ0 + q · (Γ1 + Γ2). Now, there are two cases to consider depending on whether a is a

value or not.

– a is not a value.

By inductive hypothesis, [H] a ⇒
q

S ∪ fv b∪{x } ∪{y } ∪{z } [H
′
; u ; Γ4] a′ and ∆, ⌊Γ4⌋ ; Γ′1 ⊢ a′ : A.

Therefore, [H] let (x,y) = a in b ⇒
q

S
[H ′

; u ; Γ4] let (x,y) = a
′ in b. By weakening and

rule SigmaElim, we have, ∆, ⌊Γ4⌋ ; Γ
′
1
+ (Γ2 + 0 · Γ4) ⊢ let (x,y) = a

′ in b : B{a′/z}. Using an
argument presented before, we get ∆, ⌊Γ4⌋ ; Γ

′
1
+ (Γ2 + 0 · Γ4) ⊢ let (x,y) = a

′ in b : B{a/z}.
The other clauses follow from the inductive hypothesis.

– a is a value.

Since a has Σ-type, a = (a1, a2) where ∆ ; Γ11 ⊢ a1 : A1 and ∆ ; Γ12 ⊢ a2 : A2{a1/x} and

Γ1 = r · Γ11 + Γ12. Assuming x ′
and y ′

are fresh enough, [H] let (x,y) = (a1, a2) in b ⇒
q

S

[H, x ′
(q ·r)
7→ Γ11 ⊢ a1 : A1, y

′
q

7→ Γ12 ⊢ a2 : A2 ; 0 ; x ′=a1 :(q ·r)A1, y
′=a2 :

q
A2] b{x

′/x}{y′/y}.

Since H ⊢ ∆; Γ0 + q · (r · Γ11 + Γ12 + Γ2), so H, x
′
(q ·r)
7→ Γ11 ⊢ a1 : A1, y

′
q

7→ Γ12 ⊢ a2 : A2 ⊢ ∆, x ′=
a1 :A1, y

′= a2 :A2; (Γ0, x
′= a1 :

0
A1, y

′= a2 :
0
A2) + q · (Γ2, x

′= a1 :
r
A1, y

′= a2 :
1
A2). By 8.1,

∆, x ′ = a1 : A1, y
′ = a2 : A2 ; Γ2, x

′ = a1 :
r
A1, y

′ = a2 :
1
A2 ⊢ b{x ′/x}{y′/y} : B{(x ′, y′)/z}.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 27

But then, by conversion, ∆, x ′ = a1 : A1, y
′ = a2 : A2 ; Γ2, x

′ = a1 :
r
A1, y

′ = a2 :
1
A2 ⊢

b{x ′/x}{y′/y} : B{(a1, a2)/z}. The fourth clause: q·(Γ2 ⋄(r ⋄1))+0⋄(q·r) ⋄q×
(⟨H ⟩ 0⊺ 0⊺

Γ11 0 0

Γ12 0 0

)
≤

q · (r · Γ11 + Γ12 + Γ2 ⋄0⋄0) + (0⋄((q · r) ⋄q)) follows by reflexivity.

In all the other cases, a is a value.

□

Theorem 8.9 (Soundness). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then either a is a value or there exists Γ′,
H

′
, u′, Γ4,A′

such that for any S ⊇ dom∆:

• [H] a : A ⇒S [H
′
; u′ ; Γ4] a′ : A′

• H
′ ⊢ ∆, ⌊Γ4⌋; Γ

′

• ∆, ⌊Γ4⌋ ; Γ
′ ⊢ a′ : A′

• Γ′ + u′ + 0⋄ Γ4 × ⟨H ′⟩ ≤ Γ ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ4
Proof. Follows from 8.8 with q = 1 and Γ0 = 0 · Γ. □

The soundness theorem is similar in spirit to theorems showing correctness of usage in graded

type systems via operational methods [Brunel et al. 2014]. But this theorem can be proved by

simple induction on the typing derivation; it does not require much extra machinery over and

above the reduction relation, unlike the proof of soundness in Brunel et al. [2014] which requires a

realizability model on top of the reduction relation. In this regard, our soundness theorem is more

in line with the modality preservation theorem in Abel and Bernardy [2020].

We can use the soundness theorem to prove the usual preservation and progress lemmas. The

proofs are similar to the corresponding ones for the simple version (5.12 and 5.13). This implies

that the ordinary semantics is sound with respect to a resource-aware semantics.

Let us look at an example application of this theorem.

Example 8.10. Consider any security latticeQ , as described in Section 3.2. Let s be any element such

that 1 ≰ s . Also, let A = 1type → type such that AUnit = Int. And let x :
1 type, y :qAx ⊢ B : type

for some q ∈ Q .
Now, in empty context, consider a term f of type Πx :

1 type.Πy :
s
Ax .B. (Note that s and q

need not be equal, as explained in irrelevant quantification.) Then, we can show that f Unit 0
and f Unit 1 either both diverge or produce equal values. If f Unit diverges, then both diverge.

Otherwise, [�] f Unit ⇒⇒ [H] λy :
s Int.b. Now, [H] (λy :

s Int.b) 0 ⇒ [H, y
s

7→ 0] b and [H] (λy :
s

Int.b) 1 ⇒ [H, y
s

7→ 1] b. By 6.3, we know that ((H, y
s

7→ 0), b) and ((H, y
s

7→ 1), b) either both
diverge or reduce to the same value.

9 DISCUSSION

9.1 Definitional-equivalence and irrelevance

The terms “irrelevance” and “irrelevant quantification” have multiple meanings in the literature.

Our primary focus is on erasability, the ability for terms to quantify over arguments that need not

be present at runtime. However, this terminology often includes compile-time irrelevance, or the

blindness of type equality to such erasable parts of terms. These terms are also related to, but not

the same as, “parametricity” or “parametric quantification”, which characterizes functions that map

equivalent arguments to equivalent results.

One difference between our formulation and a more traditional dependently-typed calculus is

that the conversion rule (rule T-conv) is specified in terms of an abstract equivalence relation

on terms, written A ≡ B. Our proofs about this system work for any relation that satisfies the

following properties.

, Vol. 1, No. 1, Article . Publication date: November 2020.

28 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

Definition 9.1. We say that the relation A ≡ B is sound if it:

(1) is equivalence relation,

(2) contains the small step relation, in other words, if a ; a
′
then a ≡ a

′
,

(3) is closed under substitution, in other words, if a1 ≡ a2 then b{a1/x} ≡ b{a2/x} and a1{b/x} ≡

a2{b/x},

(4) is injective for type constructors, for example, if Πx :q1 A1.B1 ≡ Πx :q2 A2.B2 then q1 = q2 and

A1 ≡ A2 and B1 ≡ B2 (and similar for 2q
A and A ⊕ B),

(5) and is consistent, in other words, if A ≡ B and both are values, then they have the same head

form.

The standard β-conversion relation, defined as the reflexive, symmetric, transitive and congruent

closure of the step relation, is a sound relation.

However, β-conversion is not the only relation that would work. Dependent type systems with ir-

relevance sometimes erase irrelevant parts of terms before comparing them up to β-equivalence [Bar-
ras and Bernardo 2008]. Alternatively, a typed definition of equivalence, might use the total relation

when equating irrelevant components [Pfenning 2001]. In future work, we hope to show that any

sound definition of equivalence can be coarsened by ignoring irrelevant components in terms

during comparison. We conjecture that such a relation would also satisfy the properties above. In

particular, our results from Section 6 tell us that such coarsening of the equivalence relation is

consistent with evaluation, and therefore contains the step relation.

9.2 Connection to Haskell

The current design of linear types in GHC/Haskell is essentially an instance of the type system

described in this paper, using the linearity semiring. Users can mark arguments with grades 1 or ω,
but a grade of 0 is sometimes needed internally. Haskell’s kind system supports irrelevance, but not

linearity, so the two features do not yet interact. It is only with dependent types that we need to

deploy our brand of quantitative types. The current structure will be able to migrate to quantitative

type theory with little, if any, backward compatibility trouble for users.

One feature of Haskell’s linear types does cause a small wrinkle, though: Haskell supports

multiplicity polymorphism. An easy example is in the type of map, which is forall m a b. (a
%m-> b) -> [a] %m-> [b]. We see that the function argument to map can be either linear or

unrestricted, and that this choice affects whether the input list is restricted. We cannot support

quantity polymorphism in our type theory, as quantifying over whether or not an argument is

relevant would mean that we could no longer compile a quantity-polymorphic function: would the

compiled function take the argument in a register or not? The solution is to tweak the meaning

of quantity polymorphism slightly: instead of quantifying over all possible quantities, we would

be polymorphic only over quantities q such that 1 ≤ q. That is, we would quantify over only

relevant quantities. This reinterpretation of multiplicity polymorphism avoids the trouble with

static compilation. Furthermore, we see no difficulty in extending our quantitative type theory

with this kind of quantity polymorphism; in the linear Haskell work, multiplicity polymorphism is

nicely straightforward, and we expect the same to be true here, too.

Commentary on the practicalities of type checking Haskell based on GraD appears in Appendix B.

9.3 Comparison withQuantitative Type Theory

Quantitative Type Theory QTT [Atkey 2018; McBride 2016] uses elements of a resource semiring

to track the usage of variables in a dependent type system. This system has a typing judgement of

the form: x1 :
ρ1 A1, x2 :

ρ2 A2, . . . , xn :
ρn An ⊢ a :

ρ A, where ρis and ρ are elements of a semiring.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 29

Roughly speaking, this judgement means that using ρi copies of xi of type Ai , with i varying from

1 to n, we get ρ copies of a of type A.
In QTT, ρ can be either 0 or 1. When ρ is 1, the system is similar to GraD. This is not a limitation

per se: to express requirements of 0 copies of a, one need only multiply the context by 0. But this

approach means that our system treats types the same as any other irrelevant component of terms.

In contrast, QTT disables resource checking for the 0 fragment, which includes all subcomponents

of terms that correspond to types. As a result, the resource annotations that appear in these types

are ignored. This has both positive and negative effects on the design of the language.

On the positive side, because linear tensor types are turned into normal (non-linear) products,

QTT can support strong-Σ types, allowing projections from tuples that violate the usage require-

ments of their construction. In contrast, GraD supports weak-Σ types only, with resource-checked

pattern matching as the only elimination form.

On the negative side, however, QTT is restricted to semirings that are zerosumfree (q1 + q2 =
0 ⇒ q1 = q2 = 0) and entire (q1 · q2 = 0 ⇒ q1 = 0 ∨ q2 = 0). (These properties are necessary to

prove substitution.) This limits QTT’s applicability. For example, QTT can not be applied to the

class of semirings described in Section 3.2 that are not entire. On the other hand, our soundness

theorem places no constraint on the semiring allowing us to work with such semirings, as lemma

6.3 and example 8.10 show.

Furthermore, because QTT ignores usages in types, its internal logic cannot reason about the

resource usage of programs. For example, the following proposition is not provable in QTT:

∀f : (Bool →0 Bool). f True = f False

This proposition says that for any constant boolean function, the result of applying it to True is
the same as the result of applying it to False. This proposition is not provable in QTT because f
ranges over many functions, including those that examine the argument. In the 0-fragment, the

type system cannot prevent a function that uses its argument to be given a type that says that it

does not.

⊢ λx :
0 A.x :

0 Πx :
0 A.A

Abel [2018] also lists additional ramifications of eliminating resource checking in types. In

particular, he notes that in QTT, it is not possible to use resource usage to optimize the computation

of types during type checking. In particular, erasing irrelevant terms not only optimizes the output

of a compiler for a dependently-typed language, it is also an optimization that is useful during

compilation, when types must be normalized for comparison.

Abel also notes that without type-level resource checking, QTT cannot interpret types as values,

and make them the subject of a type case operation. In this respect, GraD is less expressive than

Abel’s system or GrTT. Our Π and Σ types do not record howmany times the argument x appears in

the body of the type. As a result, if such types are the scrutinee of a pattern match, this information

is not available.

Finally, we note that GraD includes case and subusaging, while QTT does not.

9.4 Abstract Algebraic Generalization

Our type system with graded contexts has operations for addition (Γ1 + Γ2) and scalar multiplication

(q · Γ) defined over an arbitrary partially-ordered semiring. Furthermore, the partial ordering

from the semiring was lifted to contexts Γ1 ≤ Γ2. However, we can provide reasonable alternative

definitions for these operations and relations and all our proofs would still work the same. Here,

we lay out what constitutes a reasonable definition.

Our contexts are an example of a general algebraic structure, called a partially-ordered left

semimodule. Furthermore, vectors and matrices of quantities also can also be seen through this

, Vol. 1, No. 1, Article . Publication date: November 2020.

30 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

abstract mathematical lens. This may help in future extensions and applications of the work

presented in this paper.

We follow Golan [1999] in our terminology and definitions here.

Definition 9.2 (LeftQ-semimodule). Given a semiring (Q,+, ·, 0, 1), we say that a leftQ-semimodule

is a commutative monoid (M, ⊕, 0) along with a left multiplication function _ ⊙ _ : Q ×M → M
such that the following properties hold.

• for q1,q2 ∈ Q andm ∈ M , we have, (q1 + q2) ⊙m = q1 ⊙m ⊕ q2 ⊙m
• for q ∈ Q andm1,m2 ∈ M , we have, q ⊙ (m1 ⊕m2) = q ⊙m1 ⊕ q ⊙m2

• for q1,q2 ∈ Q andm ∈ M , we have, (q1 · q2) ⊙m = q1 ⊙ (q2 ⊙m)

• form ∈ M , we have, 1 ⊙m =m
• for q ∈ Q andm ∈ M , we have, 0 ⊙m = q ⊙ 0 = 0.

Graded contexts Γ (with the same ⌊Γ⌋) satisfy this definition, using the operations as defined

before. Another example of a semimodule is Q itself, with ⊕ := + and ⊙ := ·.

Next, let us consider the partial ordering of our contexts. The ordering is basically a lifting of

the partial ordering in the semiring. But in general, a partial order on a left semimodule needs to

satisfy only the following properties.

Definition 9.3 (Partially-ordered left Q-semimodule). Given a partially-ordered semiring (Q, ≤), a
left Q-semimoduleM is said to be partially-ordered iff there exists a partial order ≤M onM such

that the following properties hold.

• form1,m2,m ∈ M , ifm1 ≤M m2, thenm ⊕m1 ≤M m ⊕m2

• for q ∈ Q andm1,m2 ∈ M , ifm1 ≤M m2, then q ⊙m1 ≤M q ⊙m2

• for q1,q2 ∈ M andm ∈ M , if q1 ≤ q2, then q1 ⊙m ≤M q2 ⊙m.

Note that our ordering of contexts Γ satisfy these properties.

We use matrices on several occasions. Matrices can be seen as homomorphisms between semi-

modules. Given a semiring Q , an m × n matrix with elements drawn from Q is basically a Q-
homomorphism from Qm

to Qn
.

For Q-semimodulesM,N , a function _α : M → N is said to be a Q-homomorphism iff:

• form1,m2 ∈ M , we have, (m1 ⊕m2)α =m1α ⊕m2α
• for q ∈ Q andm ∈ M , we have, (q ⊙m)α = q ⊙ (mα).

So the matrix ⟨H ⟩ for a heap H is an endomorphism from Qn
to Qn

where n = |H |. Also, an

identity matrix is an identity homomorphism.

Next, for left Q-semimodulesM,N , P and Q-homomorphisms _α : M → N and _β : N → P , the

composition _(α ◦ β) : M → P can be given by matrix multiplication, α × β . The composition is

associative. And it obeys the identity laws.

This makes the set VQ = {Qn |n ∈ N} with Hom(Qm,Qn) =Mm,n(Q) a category. We worked in

this category. There may be other such categories worth exploring.

10 OTHER RELATEDWORK

10.1 Heap Semantics for Linear Logic

Computational and operational interpretations of linear logic have been explored in several works,

especially in Chirimar et al. [1996], Turner and Wadler [1999]. In Turner and Wadler [1999], the

authors provide a heap-based operational interpretation of linear logic. They show that a call-

by-name calculus enjoys the single pointer property, meaning a linear resource has exactly one

reference while a call-by-need calculus satisfies a weaker version of this property, guaranteeing only

the maintenance of a single pointer. This system considers only linear and unrestricted resources.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 31

We generalize this operational interpretation of linear logic to quantitative type theory by allowing

resources to be drawn from an arbitrary semiring. We derive a quantitative version of the single

pointer property in 6. We can develop a quantitative version of the weak single pointer property

for call-by-need reduction but for this, we need to modify the typing rules to allow sharing of

resources.

10.2 Combining dependent and linear types

Perhaps the earliest work studying the combination of linear and dependent types was proposed in

the form of a categorical model by Bonfante et al. [2001] who were interested in characterizing

how a linear dependent type system should be designed. A year later, Cervesato and Pfenning

[2002] proposed the Linear Logical Framework (LLF) that combined non-dependent linear types

with dependent types. This paper spurred a number of publications, but most relevant are in the

line of work which extend dependent types with Girard et al. [1992]’s and Dal Lago and Hofmann

[2009]’s bounded linear types. For example, Dal Lago and Gaboardi [2011]’s dlPCF, a sound and

complete system for reasoning about evaluation bounds of PCF programs. Dal lago and Petit [2012]

also show that dlPCF can also be used to reason about call-by-value execution, and Gaboardi

et al. [2013] develop a similar system called DFuzz for analyzing differential privacy of queries

involving sensitive information. In the same vein, Krishnaswami et al. [2015] show how to combine

non-dependent linear types with dependent types by generalizing Benton [1995]’s linear/non-linear

logic. But all of these work had some separation between linear and non-linear parts of their

languages. Quantitative type theory [Atkey 2018; McBride 2016] provided a fresh way to look at

this problem by combining the linear and non-linear parts using a resource semiring.

10.3 Quantities as modalities

Orchard et al. [2019] introduced a system with notion of graded necessity modalities—here called

usage modalities—in a practical programming language with usage polymorphism, indexed types,

and the use of arbitrary semirings. However, their system does not have full dependent types. They

show that usage modalities can be used to encode a large number of graded coeffects in the style

of Gaboardi et al. [2016] and Brunel et al. [2014]. A coeffect captures how a context is used, which is

dual to an effect, and thus, usage modalities are graded comonads rather than graded monads [Fujii

et al. 2016], which capture effects.

Abel and Bernardy [Abel and Bernardy 2020] use a quantitative type system to provide an

abstract view of modalities. Their type system is similar in structure to ours, but its features

and requirements differ. It includes usage and predicative parametric polymorphism but lacks

an extension to dependent types. Their system is also strongly normalizing. Furthermore, Abel

and Bernardy define a relational interpretation for their system and use it to derive parametricity

principles. One property that they derive from this logical relation is that irrelevant arguments

do not affect computation (or equality). Due to our inclusion of the type : type axiom, this proof

technique is unavailable to us, so we must use more syntactic methods. On the other hand, this

axiom does not play a major role in our proofs: we conjecture that our approach to quantitative

dependent types would work equally well in normalizing type theories.

10.4 Irrelevance and dependent types

There are several approaches to adding irrelevant quantification to dependently-typed languages.

Miquel [2001] first added “implicit” quantification to a Curry-style version of the extended Calculus

of Constructions. In this system, only the relevant parts of the computation may be explicit in

terms, everything else must be implicit. Implicit arguments are thus those that do not appear free in

the body of their abstractions. Barras and Bernardo [2008] showed how to support decidable type

, Vol. 1, No. 1, Article . Publication date: November 2020.

32 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

checking by allowing type annotations and other irrelevant subcomponents to appear in terms. In

this setting, irrelevant arguments must not be free in the erasure of the body of their abstractions.

Mishra-Linger and Sheard [2008] extended this approach to pure type systems. More recently,

Weirich et al. [2017] used these ideas as part of a proposal for a core language for Dependent Haskell.

McBride [2016], further refined by Atkey [2018], proposed using the 0 element in quantitative type

theory to represent irrelevant quantification in dependent types. We have followed their design in

making the usage of irrelevant variables in the co-domain of Π-types unrestricted.

11 FUTUREWORK AND CONCLUSIONS

Graded type systems are a generic framework for expressing the flow and usage of resources in

programs. This work provides a new way of incorporating this framework into dependently-typed

languages, with the goal of supporting both type erasure and linearity in the same system. An

ordinary, substitution-based operational semantics does not have the ability to model the use

of resources represented by variables. Therefore, we use a heap semantics to track usage during

evaluation of terms. We show that the type system is sound with respect to this heap semantics—and

thus respects usage annotations.

As always, there is more to explore: What “free theorems” can we get from our heap semantics?

What happens when we add imperative features—like arrays—to our language? What would a

general form of abstract equality up to erasure look like? What happens when we add multiple

different modalities to our language?

The answers to these questions may have practical implications. Currently, languages such as

Haskell, Rust, Idris, and Agda are experimenting with dependent and linear types, as well as the

more general applications of graded type theories. We hope that this work will provide guidance in

these language designs and extensions.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant

No. 1521539, and Grant No. 1704041. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author and do not necessarily reflect the views of the

National Science Foundation.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 33

REFERENCES

Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A Core Calculus of Dependency. In Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). Association for

Computing Machinery, New York, NY, USA, 147–160. https://doi.org/10.1145/292540.292555

Andreas Abel. 2018. Resourceful Dependent Types. Presentation at 4th International Conference on Types for Proofs and

Programs (TYPES 2018), Braga, Portugal..

Andreas Abel and Jean-Philippe Bernardy. 2020. A Unified View of Modalities in Type Systems. Proceedings of the ACM on

Programming Languages 4, ICFP (2020). To appear.

Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical

Methods in Computer Science 8, 1 (2012). https://doi.org/10.2168/LMCS-8(1:29)2012

The Agda-Team. 2020. Run-time Irrelevance. https://agda.readthedocs.io/en/v2.6.1.1/language/runtime-irrelevance.html

Robert Atkey. 2018. The Syntax and Semantics of Quantitative Type Theory. In LICS ’18: 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science, July 9–12, 2018, Oxford, United Kingdom. https://doi.org/10.1145/3209108.3209189

H. P. Barendregt. 1993. Lambda Calculi with Types. Oxford University Press, Inc., USA, 117–309.

Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent

Types. In Foundations of Software Science and Computational Structures (FOSSACS 2008), Roberto Amadio (Ed.). Springer

Berlin Heidelberg, Budapest, Hungary, 365–379.

P. N. Benton. 1995. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract). In Selected Papers

from the 8th International Workshop on Computer Science Logic (CSL ’94). Springer-Verlag, London, UK, UK, 121–135.

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and Arnaud Spiwack. 2018. Linear

Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program. Lang. 2, POPL (2018), 5:1–5:29.

https://doi.org/10.1145/3158093

Guillaume Bonfante, François Lamarche, and Thomas Streicher. 2001. A model of a dependent linear calculus. Intern report

A01-R-262 || bonfante01c.

Edwin Brady. 2020. Idris 2: Quantitative Type Theory in Action. (Feb. 2020). Draft available from https://www.type-

driven.org.uk/edwinb/idris-2-quantitative-type-theory-in-action.html.

Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. 2014. A Core Quantitative Coeffect Calculus. In

Programming Languages and Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 351–370.

Iliano Cervesato and Frank Pfenning. 2002. A Linear Logical Framework. Information and Computation 179, 1 (2002), 19 –

75.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. 1996. Reference counting as a computational interpretation of linear

logic. Journal of Functional Programming 6, 2 (March 1996), 195–244. https://doi.org/10.1017/S0956796800001660

U. Dal Lago andM. Gaboardi. 2011. Linear Dependent Types and Relative Completeness. In 2011 IEEE 26th Annual Symposium

on Logic in Computer Science. 133–142.

Ugo Dal Lago and Martin Hofmann. 2009. Bounded Linear Logic, Revisited. In Typed Lambda Calculi and Applications,

Pierre-Louis Curien (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80–94.

Ugo Dal lago and Barbara Petit. 2012. Linear Dependent Types in a Call-by-Value Scenario. In Proceedings of the 14th

Symposium on Principles and Practice of Declarative Programming (PPDP ’12). Association for Computing Machinery,

New York, NY, USA, 115–126.

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. Ph.D. Dissertation. University of Pennsylvania.

Richard A. Eisenberg. 2018. Quantifiers for Dependent Haskell. GHC Proposal #102. https://github.com/goldfirere/ghc-

proposals/blob/pi/proposals/0000-pi.rst

Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. 2016. Towards a Formal Theory of Graded Monads. In Foundations

of Software Science and Computation Structures, Bart Jacobs and Christof Löding (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 513–530.

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear Dependent Types for

Differential Privacy. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’13). Association for Computing Machinery, New York, NY, USA, 357–370.

Marco Gaboardi, Shin-ya Katsumata, Dominic A Orchard, Flavien Breuvart, and Tarmo Uustalu. 2016. Combining effects

and coeffects via grading. In ICFP. 476–489.

Dan R Ghica and Alex I Smith. 2014. Bounded linear types in a resource semiring. In European Symposium on Programming

Languages and Systems. Springer, 331–350.

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Bounded linear logic: a modular approach to polynomial-time

computability. Theoretical Computer Science 97, 1 (1992), 1–66.

Jonathan S. Golan. 1999. Semirings and their Applications. Springer Netherlands. https://doi.org/10.1007/978-94-015-9333-5

Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde.

, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/292540.292555
https://doi.org/10.2168/LMCS-8(1:29)2012
https://agda.readthedocs.io/en/v2.6.1.1/language/runtime-irrelevance.html
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3158093
https://www.type-driven.org.uk/edwinb/idris-2-quantitative-type-theory-in-action.html
https://www.type-driven.org.uk/edwinb/idris-2-quantitative-type-theory-in-action.html
https://doi.org/10.1017/S0956796800001660
https://github.com/goldfirere/ghc-proposals/blob/pi/proposals/0000-pi.rst
https://github.com/goldfirere/ghc-proposals/blob/pi/proposals/0000-pi.rst
https://doi.org/10.1007/978-94-015-9333-5

34 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. 2015. Integrating Linear and Dependent Types. In Proceedings

of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New

York, NY, USA, 17–30.

John Launchbury. 1993. A natural semantics for lazy evaluation. POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT

symposium on Principles of programming languagesl (3 1993), 144–154. https://doi.org/10.1145/158511.158618

Conor McBride. 2016. I Got Plenty o’ Nuttin’. Springer International Publishing, Cham, 207–233.

Alexandre Miquel. 2001. The Implicit Calculus of Constructions Extending Pure Type Systems with an Intersection Type Binder

and Subtyping. Springer Berlin Heidelberg, Berlin, Heidelberg, 344–359. https://doi.org/10.1007/3-540-45413-6_27

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems. In Foundations of Software

Science and Computational Structures (FoSSaCS). Springer.

Benjamin Moon, Harley Eades III, and Dominic Orchard. 2020. Graded Modal Dependent Type Theory (Extended Abstract).

TyDe (May 2020).

Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Parametric Quantifiers for Dependent Type Theory. Proc.

ACM Program. Lang. 1, ICFP, Article 32 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110276

Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning with Graded Modal

Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (July 2019), 30 pages. https://doi.org/10.1145/3341714

Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: A Calculus of Context-Dependent Computation. In

Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). Association for

Computing Machinery, New York, NY, USA, 123–135. https://doi.org/10.1145/2628136.2628160

Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In Proceedings of the 16th

Annual IEEE Symposium on Logic in Computer Science (LICS ’01). IEEE Computer Society, Washington, DC, USA, 221–.

http://dl.acm.org/citation.cfm?id=871816.871845

Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy. In

Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming (ICFP ’10). Association for

Computing Machinery, New York, NY, USA, 157–168. https://doi.org/10.1145/1863543.1863568

David N. Turner and Philip Wadler. 1999. Operational interpretations of linear logic. Theoretical Computer Science 227, 1

(1999), 231 – 248. https://doi.org/10.1016/S0304-3975(99)00054-7

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow Analysis. J. Comput.

Secur. 4, 2–3 (Jan. 1996), 167–187.

Philip Wadler. 1990. Linear types can change the world. In IFIP TC, Vol. 2. 347–359.

Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard A. Eisenberg. 2019. A Role for Dependent Types in

Haskell. Proc. ACM Program. Lang. 3, ICFP, Article 101 (July 2019), 29 pages. https://doi.org/10.1145/3341705

Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A. Eisenberg. 2017. A Specification

for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017), 29 pages. https://doi.org/10.

1145/3110275

James Wood and Robert Atkey. 2020. A Linear Algebra Approach to Linear Metatheory. arXiv:cs.PL/2005.02247

, Vol. 1, No. 1, Article . Publication date: November 2020.

https://doi.org/10.1145/158511.158618
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2628136.2628160
http://dl.acm.org/citation.cfm?id=871816.871845
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1016/S0304-3975(99)00054-7
https://doi.org/10.1145/3341705
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275
http://arxiv.org/abs/cs.PL/2005.02247

A graded dependent type system with a usage-aware semantics (extended version) 35

A FULL JUDGEMENTS

A.1 Simple graded type system

∆ ; Γ ⊢ a : A (Simple graded type system)

ST-Sub

∆ ; Γ1 ⊢ a : A Γ1 ≤ Γ2

∆ ; Γ2 ⊢ a : A

ST-Var

x < dom∆ ∆ ⊢ Γ

(∆, x:A) ; (0 · Γ, x :1A) ⊢ x : A

ST-Weak

x < dom∆
∆ ; Γ ⊢ a : B

∆, x:A ; Γ, x :0A ⊢ a : B

ST-Unit

� ; � ⊢ unit : Unit

ST-UnitE

∆ ; Γ1 ⊢ a : Unit
∆ ; Γ2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let unit = a in b : B

ST-Lam

∆, x:A ; Γ, x :qA ⊢ a : B

∆ ; Γ ⊢ λx :qA.a : (qA → B)

ST-App

∆ ; Γ1 ⊢ a : (qA → B)

∆ ; Γ2 ⊢ b : A

∆ ; Γ1 + q · Γ2 ⊢ a b : B

ST-Box

∆ ; Γ ⊢ a : A

∆ ; q · Γ ⊢ boxq a : 2q
A

ST-LetBox

∆ ; Γ1 ⊢ a : 2q
A

∆, x:A ; Γ2, x :
q
A ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let box x = a in b : B

ST-Pair

∆ ; Γ1 ⊢ a : A

∆ ; Γ2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ (a, b) : A ⊗ B

ST-Spread

∆ ; Γ1 ⊢ a : A1 ⊗ A2

∆ ; Γ2, x :
1
A1, y :

1
A2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let (x,y) = a in b : B

ST-Inj1

∆ ; Γ ⊢ a : A1

∆ ; Γ ⊢ inj
1
a : A1 ⊕ A2

ST-Inj2

∆ ; Γ ⊢ a : A2

∆ ; Γ ⊢ inj
2
a : A1 ⊕ A2

ST-Case

1 ≤ q

∆ ; Γ1 ⊢ a : A1 ⊕ A2

∆ ; Γ2 ⊢ b1 :
q
A1 → B

∆ ; Γ2 ⊢ b2 :
q
A2 → B

∆ ; q · Γ1 + Γ2 ⊢ caseq a of b1; b2 : B

A.2 Operational semantics for the simple graded type system

The operational semantics depend on a notion of values:

values v ::= unit | λx :qA.a | boxq a | (a, b) | inj
1
a | inj

2
a

a ; a
′

(Small-step operational semantics)

S-AppCong

a ; a
′

a b ; a
′
b

S-Beta

(λx :qA.a) b ; a{b/x}

S-UnitCong

a ; a
′

let unit = a in b ; let unit = a
′ in b

S-UnitBeta

let unit = unit in b ; b

S-BoxCong

a ; a
′

let box x = a in b ; let box x = a
′ in b

S-BoxBeta

let box x = boxq a in b ; b{a/x}

S-SpreadCong

a ; a
′

let (x,y) = a in b ; let (x,y) = a
′ in b

, Vol. 1, No. 1, Article . Publication date: November 2020.

36 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

S-SpreadBeta

let (x,y) = (a, b) in b ; b{a/x}{b/y}

S-CaseCong

a ; a
′

caseq a of b1; b2 ; caseq a′ of b1; b2

S-Case1Beta

caseq (inj1 a) of b1; b2 ; b1 a

S-Case2Beta

caseq (inj2 a) of b1; b2 ; b2 a

Theorem A.1 (Preservation). If ∆ ; Γ ⊢ a : A and a ; a
′
then ∆ ; Γ ⊢ a′ : A.

Theorem A.2 (Progress). If � ; � ⊢ a : A then either a is a value or there exists some a′ such that

a ; a
′
.

A.3 Heap semantics

[H] a ⇒r

S
[H ′

; u′ ; Γ′] a′ (Small-step reduction relation (part 1))

Small-Var

1 ≤ r

[H1, x
(q+r)
7→ Γ ⊢ a : A,H2] x ⇒r

S
[H1, x

q

7→ Γ ⊢ a : A,H2 ; 0 |H1 | ⋄ r ⋄0 |H2 |
; �] a

Small-AppL

[H] a ⇒r

S ∪ fv b
[H ′

; u′ ; Γ] a′

[H] a b ⇒r

S
[H ′

; u′ ; Γ] a′ b

Small-AppBeta

x < VarH ∪ fv b ∪ fv a − {y} ∪ S

a
′ = a{x/y}

[H] (λy :qA′.a) b ⇒r

S
[H, x

r ·q
7→ Γ ⊢ b : A ; 0 |H | ⋄0 ; x :r ·qA] a′

Small-UnitL

[H] a ⇒r

S ∪ fv b
[H ′

; u′ ; Γ] a′

[H] let unit = a in b ⇒r

S
[H ′

; u′ ; Γ] let unit = a
′ in b

Small-UnitBeta

[H] let unit = unit in b ⇒r

S
[H ; 0 |H |

; �] b

Small-CaseL

[H] a ⇒
r ·q

S ∪ fv b1 ∪ fv b2

[H ′
; u′ ; Γ] a′

[H] caseq a of b1; b2 ⇒r

S
[H ′

; u′ ; Γ] caseq a′ of b1; b2

Small-Case1

[H] caseq (inj1 a) of b1; b2 ⇒
r

S
[H ; 0 |H |

; �] b1 a

Small-Case2

[H] caseq (inj2 a) of b1; b2 ⇒
r

S
[H ; 0 |H |

; �] b2 a

Small-Sub

[H1] a ⇒r

S
[H ′

; u′ ; Γ] a′

H1 ≤ H2

[H2] a ⇒r

S
[H ′

; u′ ; Γ] a′

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 37

[H] a ⇒r

S
[H ′

; u′ ; Γ′] a′ (Small-step reduction relation (part 2))

Small-LetBoxL

[H] a ⇒r

S ∪ fv b
[H ′

; u′ ; Γ] a′

[H] let box x = a in b ⇒r

S
[H ′

; u′ ; Γ] let box x = a
′ in b

Small-LetBoxBeta

x < VarH ∪ fv a ∪ fv b − {y} ∪ S

b
′ = b{x/y}

[H] let box y = boxq a in b ⇒r

S
[H, x

r ·q
7→ Γ ⊢ a : A ; 0 |H | ⋄0 ; x :r ·qA] b′

Small-ProjL

[H] a ⇒r

S ∪ fv b
[H ′

; u′ ; Γ] a′

[H] let (x,y) = a in b ⇒r

S
[H ′

; u′ ; Γ] let (x,y) = a
′ in b

Small-ProjBeta

x
′ < VarH ∪ fv a1 ∪ fv a2 ∪ fv b − {x} − {y} ∪ S

y
′ < VarH ∪ fv a1 ∪ fv a2 ∪ fv b − {x} − {y} ∪ S ∪ {x ′}

b
′ = b{x ′/x}{y′/y}

[H] let (x,y) = (a1, a2) in b ⇒r

S
[H, x ′

r

7→ Γ1 ⊢ a1 : A1, y
′ r

7→ Γ2 ⊢ a2 : A2 ; 0 |H | ⋄0⋄0 ; x ′ :r A1, y
′
:
r
A2] b

′

A.4 Dependent graded type system

The full typing rules for GraD are below. This system uses the same definition of values and

operational semantics as the simple system.

∆ ; Γ ⊢ a : A (Typing rules for dependent system)

T-sub

∆ ; Γ1 ⊢ a : A Γ1 ≤ Γ2

∆ ; Γ2 ⊢ a : A

T-weak

x < dom∆
∆ ; Γ1 ⊢ a : B

∆ ; Γ2 ⊢ A : type

∆, x:A ; Γ1, x :
0
A ⊢ a : B (T-conv1?)

T-type

� ; � ⊢ type : type

T-var

x < dom∆
∆ ; Γ ⊢ A : type

∆, x:A ; 0 · Γ, x :1A ⊢ x : A

T-Unit

� ; � ⊢ Unit : type

T-unit

� ; � ⊢ unit : Unit

T-UnitElim

∆ ; Γ1 ⊢ a : Unit
∆ ; Γ2 ⊢ b : B{unit/y}

∆, y:Unit ; Γ3, y :r Unit ⊢ B : type

∆;Γ1 + Γ2 ⊢ let unit = a in b : B{a/y}

T-pi

∆ ; Γ1 ⊢ A : type
∆, x:A ; Γ2, x :

r
A ⊢ B : type

∆ ; Γ1 + Γ2 ⊢ Πx :qA.B : type

, Vol. 1, No. 1, Article . Publication date: November 2020.

38 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie C Weirich

T-lam

∆, x:A ; Γ1, x :
q
A ⊢ a : B

∆ ; Γ2 ⊢ A : type

∆ ; Γ1 ⊢ λx :
q
A.a : Πx :qA.B

T-app

∆ ; Γ1 ⊢ a : Πx :qA.B
∆ ; Γ2 ⊢ b : A

∆ ; Γ1 + q · Γ2 ⊢ a b : B{b/x}

T-Sigma

∆ ; Γ1 ⊢ A : type
∆, x:A ; Γ2, x :

r
A ⊢ B : type

∆ ; Γ1 + Γ2 ⊢ Σx:qA.B : type

T-Tensor

∆ ; Γ1 ⊢ a : A

∆ ; Γ2 ⊢ b : B{a/x}

∆, x:A ; Γ3, x :
r
A ⊢ B : type

∆ ; q · Γ1 + Γ2 ⊢ (a, b) : Σx:
q
A.B

T-SigmaElim

∆ ; Γ1 ⊢ a : Σx:qA1.A2

∆, x:A1, y:A2 ; Γ2, x :
q
A1, y :

1
A2 ⊢ b : B{(x, y)/z}

∆, z:(Σx:qA1.A2) ; Γ3, z :
r (Σx:qA1.A2) ⊢ B : type

∆ ; Γ1 + Γ2 ⊢ let (x,y) = a in b : B{a/z}

T-sum

∆ ; Γ1 ⊢ A1 : type
∆ ; Γ2 ⊢ A2 : type

∆ ; Γ1 + Γ2 ⊢ A1 ⊕ A2 : type

T-inj1

∆ ; Γ ⊢ a : A1

∆ ; Γ1 ⊢ A2 : type

∆ ; Γ ⊢ inj
1
a : A1 ⊕ A2

T-inj2

∆ ; Γ ⊢ a : A2

∆ ; Γ1 ⊢ A1 : type

∆ ; Γ ⊢ inj
2
a : A1 ⊕ A2

T-CaseElim

1 ≤ q

∆ ; Γ1 ⊢ a : A1 ⊕ A2

∆ ; Γ2 ⊢ b1 : Πx :
q
A1.B{inj1 x/y}

∆ ; Γ2 ⊢ b2 : Πx :
q
A2.B{inj2 x/y}

∆, y:A1 ⊕ A2 ; Γ3, y :
r
A1 ⊕ A2 ⊢ B : type

∆;q · Γ1 + Γ2 ⊢ caseq a of b1; b2 : B{a/y}

B TYPE-CHECKING A GRADED, DEPENDENT HASKELL

This paper concerns itself with an implicit, internal language. Yet, if we are to integrate with GHC,

we must make these ideas practical. There are two type-checking challenges that will arise:

Producing GraD via elaboration A real-world compiler must support taking a surface lan-

guage, performing type inference, and then producing well-typed GraD programs via an

elaboration step. The key question here: is GraD a suitable target for elaboration? We claim

that it is. One author of the current paper, Eisenberg, has been involved in the day-to-day

implementation concerns of both linear and dependent types in GHC. While challenges

surely remain in any task this substantial, Eisenberg believes the type inference concerns of

linear types and of dependent types to be largely orthogonal. The former have been worked

out during the implementation of today’s linear types [Bernardy et al. 2018], and the latter

have been carefully studied in the context of Haskell previously [Eisenberg 2016].

Checking GraD itself GHC uses a typed intermediate language. Type-checking this language

serves only as a check on the compiler itself—but a vital check it is. With the right compiler

flags, GHC will repeat the check after every optimization pass, frequently discovering bugs

that might have otherwise gone unnoticed. If we are to use GraD as GHC’s intermediate

language, it, too, must support reasonably efficient type-checking. Yet, GraD as presented

here does not. The solution is not to encode GraD into GHC directly, but instead use an

encoding of GraD’s typing judgements as the internal language within GHC. The relationship

between the implicit nature of GraD and the explicit, implementable nature of a more detailed

encoding is one focus of our previous work [Weirich et al. 2017]. A particular challenge

is how to encode the context splitting in, say, the application rule. The solution is not to

encode this at all, but to have grades be an output of the checking algorithm, not an input.

, Vol. 1, No. 1, Article . Publication date: November 2020.

A graded dependent type system with a usage-aware semantics (extended version) 39

The algorithm then checks that the grades line up with expectations at the binding sites of

restricted variables—just as is done in the implementation today.

, Vol. 1, No. 1, Article . Publication date: November 2020.

	Abstract
	1 Introduction
	2 Our Goal
	3 The Algebra of Quantities
	3.1 Partially-ordered semirings
	3.2 Examples of partially-ordered semirings

	4 A simple graded type system
	4.1 Type system basics
	4.2 Data structures
	4.3 Type soundness
	4.4 Discussion and Variations

	5 Heap semantics for simple type system
	5.1 The step judgement
	5.2 Reduction relation
	5.3 Accounting of resources
	5.4 Determinism and Alpha-equivalence
	5.5 Bisimilarity
	5.6 Heap compatibility
	5.7 Graphical and algebraic views of the heap
	5.8 Soundness

	6 Applications
	6.1 Irrelevance
	6.2 Garbage collection
	6.3 Linearity

	7 Graded Dependent Types
	7.1 Type system
	7.2 Metatheory

	8 Heap semantics for GraD
	8.1 A dependently-typed language with definitions
	8.2 Proof of the heap soundness theorem

	9 Discussion
	9.1 Definitional-equivalence and irrelevance
	9.2 Connection to Haskell
	9.3 Comparison with Quantitative Type Theory
	9.4 Abstract Algebraic Generalization

	10 Other Related work
	10.1 Heap Semantics for Linear Logic
	10.2 Combining dependent and linear types
	10.3 Quantities as modalities
	10.4 Irrelevance and dependent types

	11 Future Work and Conclusions
	Acknowledgments
	References
	A Full Judgements
	A.1 Simple graded type system
	A.2 Operational semantics for the simple graded type system
	A.3 Heap semantics
	A.4 Dependent graded type system

	B Type-checking a graded, dependent Haskell

