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An Existential Crisis Resolved

Type inference for first-class existential types
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Despite the great success of inferring and programming with universal types, their dual—existential types—are

much harder to work with. Existential types are useful in building abstract types, working with indexed types,

and providing first-class support for refinement types. This paper, set in the context of Haskell, presents a

bidirectional type-inference algorithm that infers where to introduce and eliminate existentials without any

annotations in terms, along with an explicitly typed, type-safe core language usable as a compilation target.

This approach is backward compatible. The key ingredient is to use strong existentials, which support (lazily)

projecting out the encapsulated data, not weak existentials accessible only by pattern-matching.

Additional Key Words and Phrases: existential types, type inference, Haskell

1 INTRODUCTION

Parametric polymorphism through the use of universally quantified type variables is pervasive in

functional programming. Given its overloaded numbers, a beginning Haskell programmer literally

cannot ask for the type of 1 + 1 without seeing a universally quantified type variable.

However, universal quantification has a dual: existentials. While universals claim the spotlight,

with support for automatic elimination (that is, instantiation) in all non-toy typed functional

languages we know and automatic introduction (frequently, let-generalization) in some, existentials

are underserved and impoverished. In every functional language we know, both elimination and

introduction must be done explicitly every time, and languages otherwise renowned for their type

inference—such as Haskell—require that users define a new top-level datatype for every existential.

While not as widely useful as universals, existential quantification comes up frequently in richly

typed programming. Further examples are in Section 2, but consider writing a dropWhile function
on everyone’s favorite example datatype, the length-indexed vector:

-- dropWhile predicate vec drops the longest prefix of vec such that all elements in the prefix

-- satisfy predicate. In this type, n is the vector’s length, while a is the type of elements.

dropWhile :: (a→ Bool) → Vec n a→ Vec ??? a

How can we fill in the question marks? Without knowing the contents of the vector and the

predicate we are passing, we cannot know the length of the output. Furthermore, returning an

ordinary, unindexed list would requiring copying a suffix of the input vector, an unacceptable

performance degradation.

Existentials come to our rescue: dropWhile :: (a→ Bool) → Vec n a→ ∃m. Vec m a. Though this
example can be written today in a number of languages, all require annotations in terms both to pack

(introduce) the existential and unpack (eliminate) it through the application or pattern-matching of

a data constructor.

This paper describes a type-inference algorithm that supports implicit introduction and elimina-

tion of existentials, with a concrete setting in Haskell. We offer the following contributions:

• Section 4 presents our type-inference algorithm, the primary contribution of this paper. The

algorithm is a small extension to an algorithm that accepts a Hindley-Milner language; our

2021. 2475-1421/2021/8-ART64

https://doi.org/10.1145/3473569

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.

HTTPS://ORCID.ORG/0000-0002-7669-9781
HTTPS://ORCID.ORG/0000-0002-6756-9168
https://doi.org/10.1145/3473569


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

64:2 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

language, X, is thus a superset of Hindley-Milner (Theorem 7.3). In addition, it supports

several stability properties [Bottu and Eisenberg 2021]; a language is stable if small, seemingly

innocuous changes to the input program (such as let-inlining) do not cause a change in the

type or acceptability of a program (Theorems 7.4–7.6). Our algorithm is easily integrable

with the latest inference algorithm [Serrano et al. 2020] in the Glasgow Haskell Compiler

(GHC) (Section 8).

• Section 5 presents a core language based on System F, FX, that is a suitable target of com-

pilation (Section 6) for X. We prove FX is type-safe (Theorems 5.1 and 5.2) and supports

type erasure (Theorem 5.3). It is designed in a way that is compatible with the existing

System FC [Sulzmann et al. 2007] language used internally within GHC. All programs ac-

cepted by our algorithm elaborate to well-typed programs in FX (Theorem 7.1). In addition,

elaboration preserves the semantics of the source program, as we can observe by examining

the result of type erasure (Theorem 7.2).

We normally desire type-inference algorithms to come with a declarative specification, where

automatic introduction and elimination of quantifiers can happen anywhere, in the style of the

Hindley-Milner type system [Hindley 1969; Milner 1978]. These specifications come alongside

syntax-directed algorithms that are sound and complete with respect to the specification [Clément

et al. 1986; Damas and Milner 1982]. However, we do not believe such a system is possible with

existentials; while negative results are hard to prove conclusively, we lay out our arguments against

this approach in Section 9.1. Instead, we present just our algorithm, though we avoid the complica-

tion and distraction of unification variables by allowing our algorithm to non-deterministically

guess monotypes 𝜏 in the style of a declarative specification.

There is a good deal of literature in this area; much of it is focused on module systems, which

often wish to hide the nature of a type using an existential package. We review some important

prior work in Section 10.

The concrete examples in this paper are set in Haskell, but the fundamental ideas in our inference

algorithm are fully portable to other settings, including in languages without let-generalization.

2 MOTIVATION AND EXAMPLES

Though not as prevalent as examples showing the benefits of universal polymorphism, easy

existential polymorphism smooths out some of the wrinkles currently inherent in programming

with indexed types such as GADTs [Xi et al. 2003].

2.1 Unknown Output Indices

We first return to the example from the introduction, writing an operation that drops an indetermi-

nate number of elements from a length-indexed vector:

data Nat = Zero | Succ Nat
type Vec :: Nat → Type→ Type -- -XStandaloneKindSignatures, new in GHC 8.10

data Vec n a where
Nil :: Vec Zero a
(:>) :: a→ Vec n a→ Vec (Succ n) a

infixr 5 :>

In today’s Haskell, the way to write dropWhile over vectors is like this:

type ExVec :: Type→ Type
data ExVec a where
MkEV :: ∀(n :: Nat) (a :: Type). Vec n a→ ExVec a

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.
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filter :: (a→ Bool) → Vec n a→ ExVec a
filter Nil = MkEV Nil
filter p (x :> xs) | p x

, MkEV v ← filter p xs
= MkEV (x :> v)

| otherwise = filter p xs

filter :: (a→ Bool) → Vec n a→ ∃m. Vec m a
filter Nil = Nil
filter p (x :> xs) | p x = x :> filter p xs

| otherwise = filter p xs

(a) (b)

Fig. 1. Implementations of filter over vectors (a) in today’s Haskell, and (b) with our extensions

dropWhile :: (a→ Bool) → Vec n a→ ExVec a
dropWhile Nil = MkEV Nil
dropWhile p (x :> xs) | p x = dropWhile p xs

| otherwise = MkEV (x :> xs)

However, with our inference of existential introduction and elimination, we can simplify to this:

dropWhile :: (a→ Bool) → Vec n a→ ∃m. Vec m a
dropWhile Nil = Nil
dropWhile p (x :> xs) | p x = dropWhile p xs

| otherwise = x :> xs

There are two key differences: we no longer need to define the ExVec type, instead using ∃m. Vec m a;
and we can omit any notion of packing in the body of dropWhile. Similarly, clients of dropWhile
would not need to unpack the result, allowing the result of dropWhile to be immediately consumed

by a map, for example.

2.2 Increased Laziness

Another function that produces an output of indeterminate length is filter . It is enlightening to

compare the implementation of filter using today’s existentials and the version possible with our

new ideas; see Figure 1.

Beyond just the change to the types and the disappearance of terms to pack and unpack exis-

tentials, we can observe that the laziness of the function has changed. (See Aside 1 for why we

cannot easily make unpack bind lazily.) In Figure 1(a), we see that the recursive call to filter must be

made before the use of the cons operator :>. This means that, say, computing take 2 (filter p vec)
(assuming take is clever enough to expect an ExVec) requires computing the result of the entire

filter , even though the analogous expression on lists would only requiring filtering enough of vec
to get the first two elements that satisfy p. The implementation of filter also requires enough stack

space to store all the recursive calls, requiring an amount of space linear in the length of the input

vector.

By contrast, the implementation in Figure 1(b) is lazy in the tail of the vector. Computing

take 2 (filter p vec) really would only process enough elements of vec to find the first 2 that satisfy

p. In addition, the computation requires only constant stack space, because filter will immediately

return a cons cell storing a thunk for filtering the tail. If a bounded number of elements satisfy p,
this is an asymptotic improvement in space requirements.

We can support the behavior evident in Figure 1(b) only because we use strong existential

packages, where the existentially packed type can be projected out from the existential package,

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.
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What if unpack were simply lazy? The problem is that this is not simple! A straight-

forward typed operational semantics would not suffice, because there is no way to, say,

reduce an unpack into a substitution (the way we would handle a lazy let). We could

imagine an untyped operational semantics that did not require unpack to evaluate the

existential package, binding its variable with a lazy binding. Without types, though, we

would be unable to prove safety. In order to keep a typed operational semantics with a lazy

unpack, we must model a set of heap bindings and an evaluation stack in our semantics.

While this is possible, such an operational semantics is unsuitable for a (dependently

typed) language where we also might wish to evaluate in types, which is our eventual

goal for Haskell. The claim here is not that a lazy unpack is impossible, but that it is not

obviously superior to the approach we advocate for here.

Relatedly, one could wonder whether we should just use a lazy Haskell pattern in

filter . Alas, Haskell does not allow a lazy pattern to bind existential variables: writing

∼(MkEV v) ← filter p xs in Figure 1(a) would cause a compile-time error. This restriction

in today’s Haskell is not incidental, because the internal language would require exactly

the power of the open approach we propose here in order to support such a lazy pattern.

Aside 1. Why lazy unpack is no easy answer

instead of relying on the use of a pattern-match. Furthermore, projection of the packed type is

requires no evaluation of any expression. We return to explain more about this key innovation in

Section 3.

2.3 Object Encoding

Suppose we have a pretty-printer feature in our application, making use of the following class:

class Pretty a where
pretty :: a→ Doc

There are Pretty instances defined for all relevant types. Now, suppose we have order :: Order ,
client ::Client , and status::OrderStatus; we wish to create a message concatenating these three details.

Today, we might say vcat [pretty order, pretty client, pretty status ], where vcat :: [Doc ] → Doc.
However, equipped with lightweight existentials, we could instead write vcat [order, client, status ],
where vcat :: [∃a. Pretty a ∧ a] → Doc. Here, the ∧ type constructor allows us to pack a witness

for a constraint (such as a type class dictionary [Hall et al. 1996]) inside an existential package.

Each element of the list is checked against the type ∃a. Pretty a ∧ a. Choosing one, checking order
against ∃a. Pretty a ∧ a uses unification to determine that the choice of a should be Order , and we

will then need to satisfy a Pretty Order constraint. In the implementation of vcat , elements of type

∃a. Pretty a ∧ a will be available as arguments to pretty :

vcat :: [∃a. Pretty a ∧ a] → Doc
vcat [ ] = empty
vcat (x : xs) = pretty x $$ vcat xs

While the code simplification at call sites is modest, the ability to abstract over a constraint in

forming a list makes it easier to avoid the types from preventing users from expressing their

thoughts more directly.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.
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Our main formal presentation in this paper does not include the packed constraints required

here, but Section 9.2 considers an extension to our work that would support this example.

2.4 Richly Typed Data Structures

Suppose we wish to design a datatype whose inhabitants meet certain invariants by construction. If

the invariants are complex enough, this can be done only by designing the datatype as a generalized

algebraic datatype (GADT) [Xi et al. 2003]. Though other examples in this space abound (for

example, encoding binary trees [McBride 2014] and regular expressions [Weirich 2018]), we will

use the idea of a well-typed expression language, perhaps familiar to our readers.
1

The idea is encapsulated in these definitions:

data Ty = Ty :→ Ty | . . . -- base types elided

type Exp :: [Ty ] -- types of in-scope variables

→ Ty -- type of expression

→ Type
data Exp ctx ty where
App :: Exp ctx (arg :→ result) → Exp ctx arg → Exp ctx result
. . .

An expression of type Exp ctx ty is guaranteed to be well-typed in our object language: note that a

function application requires the function to have a function type arg :→ result and the argument

to have type arg. (The ctx is a list of the types of in-scope variables; using de Bruijn indices means

we do not need to map names.) We are thus unable to represent the syntax tree applying, say, the

number 5 to an argument True.
However, if we are to use Exp in a running interpreter, we have a problem: users might not type

well-typed expressions. How can we take a user-written program and represent it in Exp? We must

type-check it.

Assuming a type UExp (“unchecked expression”) that is like Exp but without its indices, we

would write the following:
2

typecheck :: (ctx :: [Ty ]) → UExp→ Maybe (∃ty . Exp ctx ty)
typecheck ctx (UApp fun arg) = do -- using the Maybe monad

fun’ ← typecheck ctx fun
arg’ ← typecheck ctx arg

-- decompose the type of fun’ into expectedArgTy :→ _resultTy :
(expectedArgTy, _resultTy) ← checkFunctionTy (typeOf fun’)

-- Check whether expectedArgTy and the type of arg’ are the same (failing if not)

-- Refl is a proof the types coincide; matching on it reveals this fact to the type-checker:

Refl ← checkEqual expectedArgTy (typeOf arg’)
return (App fun’ arg’)

The use of an existential type is critical here. There is no way to knowwhat the type of an expression

is before checking it, and yet we need this type available for compile-time reasoning to be able

1
This well-worn idea perhaps originates in a paper by Pfenning and Lee [1989], though that paper does not use an indexed

datatype. Augustsson and Carlsson [1999] extend the idea to use a datatype, much as we have done here. A more in-depth

treatment of this example is the subject of a functional pearl by Eisenberg [2020].

2
This rendering of the example assumes the ability to write using dependent types, to avoid clutter. However, do not

be distracted: the dependent types could easily be encoded using singletons [Eisenberg and Weirich 2012; Monnier and

Haguenauer 2010], while we focus here on the use of existential types.
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to accept the final use of App. An example such as this one can be written today, but with extra

awkward packing and unpacking of existentials, or through the use of a continuation-passing

encoding. With the use of lightweight existentials, an example like this is easier to write, lowering

the barrier to writing richly typed, finely specified programs.

3 KEY IDEA: EXISTENTIAL PROJECTIONS

In our envisioned source language, introduction and elimination of existential types are implicit.

Precise locations are determined by type inference (as pinned down in Section 4)—accordingly,

these locations may be hard to predict. Once these locations have been identified, the compiler must

produce a fully annotated, typed core language that makes these introductions and eliminations

explicit. We provide a precise account of this core language in Section 5. But before we do that,

we use this section to informally justify why we need new forms in the first place. Why can we

no longer use the existing encoding of existential types (based on Mitchell and Plotkin [1988] and

Läufer [1996]) internally?

The key observation is that, since the locations of introductions and eliminations are hard to

predict, they must not affect evaluation. Any other design would mean that programmers lose the

ability to reason about when their expressions are reduced.

The existing datatype-based approach requires an existential-typed expression to be evaluated

to head normal form to access the type packed in the existential. This is silly, however: types are

completely erased, and yet this rule means that we must perform runtime evaluation simply to

access an erased component of a some data.

To illustrate the problem, consider this Haskell datatype:

data Exists (f :: Type→ Type) = ∀(a :: Type). Ex ! (f a)

With this construct, we can introduce existential types using the data constructor Ex and eliminate

them by pattern matching on Ex . Note the presence of the strictness annotation, written with !. A

use of the Ex data constructor, if it is automatically inserted by the type inferencer, must not block

reduction.
3

The difficult issue, however, is elimination. To access the value carried by Exists, we must use

pattern matching. We cannot use a straightforward projection function unExists :: Exists f → f ???:

it would allow the abstracted type variable to escape its scope—exactly why we cannot write a

well-scoped type signature for unExists. As a result, we cannot use this value without weak-head
evaluation of the term. As Section 3.2 shows, this forcing can decrease the laziness of our program.

While perhaps not as fundamental as our desire for introduction and elimination to be transparent

to evaluation, another design goal is to allow arbitrary let-inlining. In other words, if let x =

e1 in e2 type-checks, then e2 [e1 / x ] should also type-check. This property gives flexibility to

users: they (and their IDEs) can confidently refactor their program without fear of type errors.

Taken together, these design requirements—transparency to evaluation and support for let-
inlining—drive us to enhance our core language with strong existentials [Howard 1969]: existentials

that allow projection of both the type witness and the packed value, without pattern-matching.
4

3
Similarly, our choice of explicit introduction form for the core language must be strict in its argument if it is to be

unobservable.

4
Strong existentials stand in contrast to weak existentials. A strong existential package supports operators that access the

encapsulated type and datum, while a weak existential requires pattern-matching in order to extract the datum and bring its

type into scope. In a lazy language, strong existentials thus have greater expressive power, as we can use a lazy projection,

as we do here.
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3.1 Strong Existentials via pack and open
Our core language FX adopts the following constructs for introducing and eliminating existential

types:
5

Pack

Γ ⊢ e : 𝜏2 [𝜏1/a]
Γ ⊢ pack 𝜏1, e as ∃ a.𝜏2 : ∃ a.𝜏2

Open

Γ ⊢ e : ∃ a.𝜏
Γ ⊢ open e : 𝜏 [⌊e : ∃ a.𝜏⌋ / a]

The pack typing rule is fairly standard [Pierce 2002, Chapter 24]. This term creates an existential

package, hiding a type 𝜏1 in the package with an expression e. Our operational semantics (Figure 7)

includes a rule that makes this construct strict.

To eliminate existential types, we use the open construct (from Cardelli and Leroy [1990]) instead

of pattern matching. The open construct eliminates an existential without forcing it, as opens are
simply erased during compilation. The type of open e is interesting: we substitute away the bound

variable a, replacing it with ⌊e : ∃ a.𝜏⌋. This type is an existential projection. The idea is that we can

think of an existential package ∃ a.𝜏 as a (dependent) pair, combining the choice for a (say, 𝜏0) with

an expression of type 𝜏 [𝜏0 / a]. The type ⌊e : ∃ a.𝜏⌋ projects out the type 𝜏0 from the pair.

A key aspect of open is that the type form ⌊e : ∃ a.𝜏⌋ is a completely opaque type. In our surface

language, ⌊e : ∃ a.𝜏⌋ is equal to itself and no other type. Computation is not necessary in types.

One way to think of this is to imagine that ⌊e : ∃ a.𝜏⌋ is like a fresh type variable whose name is

long—not as a construct that, say, accesses a type within e.

The simple idea of open is very powerful. It means that we can talk about the type in an

existential package without unpacking the package. It would even be valid to project out the type of

an existential package that will never be computed. Because types can be erased in our semantics,

even projecting out the type from a bottoming expression (of existential type) is harmless.
6

Note that the type of the existential package expression is included in the syntax for projections

⌊e : ∃ a.𝜏⌋: this annotation is necessary because expressions in our surface language X might have

multiple, different types. (For example, 𝜆x → x has both type Int → Int and type Bool → Bool.)
Including the type annotation fixes our interpretation of e, but see Section 6 for more on this point.

3.2 The unpack Trap

Adding the open term to the language comes at a cost to complexity. Let us take a moment to

reflect on why a more traditional elimination form (called unpack) is insufficient.

A frequent presentation of existentials in a language based on System F uses the unpack primitive.

Pierce [2002, Chapter 24] presents the idea with this typing rule:

Unpack

Γ ⊢ e1 : ∃ a.𝜏2

Γ, a, x:𝜏2 ⊢ e2 : 𝜏

a ∉ fv(𝜏)
Γ ⊢ unpack e1 as a, x in e2 : 𝜏

The idea is that unpack extracts out the packed expression in a variable x, also binding a type

variable a to represent the hidden type. The typing rule corresponds to the pattern-match in

case e1 of Ex (x :: a) → e2, where x and a are brought into scope in e2.
7

5
These rules are slightly simplified. The full rules appear in Section 5.

6
Readers may be alarmed at that sentence: how could ⌊⊥ : ∃ a.a⌋ be a valid type? Perhaps a more elaborate system might

want to reject such a type, but there is no need to. As all types are erased and have no impact on evaluation, an exotic type

like this is no threat to type safety.

7
See Eisenberg et al. [2018] for more details on how Haskell treats that type annotation.
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This approach is attractive because it is simple to add to a language like System F. It does not

require the presence of terms in types and the necessary machinery that we describe in Section 5.

However, it is also not powerful enough to accommodate some of the examples we would like to

support.

The unpack term impacts evaluation. Because it is based on pattern matching, the unpack term

must reduce its argument to a weak-head normal form before providing access to the hidden type.

The standard reduction rule looks like this:

unpack (pack 𝜏1, e1 as ∃ a.𝜏2) as a, x in e2 −→ e1 [e1/x] [𝜏1/a]

What this rule means is that the only parts of the term that have access to the abstract type are the

ones that are evaluated after the existential has been weak-head normalized. Without weak-head

normalizing the argument to a pack, we have nothing to substitute for x and a.

Let us rewrite the filter example from Section 2.2, making more details explicit so that we can

see why this is an issue.

filter :: ∀n a. (a→ Bool) → Vec n a→ ∃m. Vec m a
filter = Λn a→ 𝜆(p :: a→ Bool) (vec :: Vec n a) →

case vec of
(:>) n1 (x :: a) (xs :: Vec n1 a) -- vec is x :> xs
| p x → ...

| otherwise→ filter n1 a p xs
Nil → pack Zero,Nil as ∃m. Vec m a -- vec is Nil

The treatment above makes all type abstraction and application explicit. Note that the pattern-

match for the cons operator :> includes a compile-time (or type-level) binding for the length of the

tail, n1.
The question here is: what do we put in the ... in the case where p x holds? One possibility is to

apply the (:>) operator to build the result. However, right away, we are stymied: what do we pass

to that operator as the length of the resulting vector? It depends on the length of the result of the

recursive call. A use of unpack cannot help us here, as unpack is used in a term, not in a type

index; even if we could use it, we would have to return the packed type, not something we can

ordinarily do.

Instead, we must use unpack (and pack) before calling the (:>) operator. Specifically, we can
write

unpack filter n1 a p xs as n2, ys in pack n2, (:>) n2 x ys as ∃m. Vec m a

This use of unpack is type-correct, but we have lost the laziness of filter we so prized in Section

2.2.

On the other hand, open allows us to fill in the ...with the following code, using the the existential

projection to access the new (type-level) length for the arguments to pack and to :>.

let ys :: ∃m. Vec m a -- usual lazy let
ys = filter n1 a p xs

in pack ⌊ys :: ∃m. Vec m a⌋, (:>) ⌊ys :: ∃m. Vec m a⌋ x (open ys) as ∃m. Vec m a

As we expand on in the next subsection, we do not have to let-bind ys; instead, we could just repeat
the sub-expression filter n1 a p xs.
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3.3 The Importance of Strength

Beyond the peculiarities of the filter example, having a lazy construct that accesses the abstracted

type in an existential package is essential to supporting inferrable existential types.

Here is a somewhat contrived example to illustrate this point:

data Counter a = Counter {zero :: a, succ :: a→ a, toInt :: a→ Int }
mkCounter :: String → ∃a.Counter a -- a counter with a hidden representation

mkCounter = ...

initial1 :: Int
initial1 = let c = mkCounter "hello" in (toInt c) (zero c)
initial2 :: Int
initial2 = (toInt (mkCounter "hello")) (zero (mkCounter "hello"))

We would like our language to accept both initial1 and initial2. After all, one of the benefits
of working in a pure, lazy language is referential transparency: programmers (and tools, such as

IDEs) should be able to perform expression inlining with no change in behavior. In both initial1
and initial2, the compiler must automatically eliminate the existential that results from each use

of mkCounter . In the definition initial1, elaboration is not difficult, even if we only have the weak

unpack elimination form to work with.

However, supporting initial2 is more problematic. Maintaining the order of evaluation of the

source language requires two separate uses of the elimination form.

To type-check the application of toInt (mkCounter "hello") to zero (mkCounter "hello"), we
must first know the type packed into the package returned from mkCounter "hello". Accessing
this type should not evaluate mkCounter "hello", however: a programmer rightly expects that

toInt is evaluated before any call to mkCounter is, which may have performance or termination

implications. More generally, we can imagine the need for a hidden type arbitrarily far away from

the call site of a function (such as mkCounter) that returns an existential; eager evaluation of the

function would be most unexpected for programmers.

Note that, critically, both calls to mkCounter in initial2 contain the same argument. Since we

are working in a pure context, we know that the result of the two calls to mkCounter "hello" in
initial2 must be the same, and thus that the program is well-typed.

In sum, if the compiler is to produce the elimination form for existentials, that elimination form

must be nonstrict, allowing the packed witness type to be accessed without evaluation. Any other

choice means that programmers must expect hard-to-predict changes to the evaluation order of

their program. In addition, if we wish to allow users to inline their let-bound identifiers, this

projection form must also be strong, and remember the existentially typed expression in its type.

Note that we are taking advantage of Haskell’s purity in this part of the design. We can soundly

support a strong elimination form like open only because we know that the expressions which

appear in types are pure. All projections of the type witness from the same expression will be equal.

In a language without this property, such as ML, we would need to enforce a value restriction on the

type projections. Such a value restriction would prevent us from injecting, say, a non-deterministic

expression into types; as there is no notion of evaluating a type, it would be unclear when and how

often to evaluate the expression which could yield different results at each evaluation.

4 INFERRING EXISTENTIALS

In this section we present the surface language, X, that we use to manipulate existentials, and the

bidirectional type system that infers them. As our concrete setting is in Haskell, our starting point
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is the surface language described by Serrano et al. [2020], modified to add support for existentials.

We add a syntax for existential quantifiers ∃ a.𝜖 and existential projections ⌊e : 𝜖⌋. An important

part of our type system is the type instantiation mechanism, which implicitly handles the opening

of existentials (Section 4.3).

4.1 Language Syntax

The syntax of our types is given in Figure 2.

𝜎 ::= 𝜖 | ∀ a.𝜎 universally quantified type

𝜖 ::= 𝜌 | ∃ b.𝜖 existentially quantified type

𝜌 ::= 𝜏 | 𝜎1 → 𝜎2 top-level monomorphic type

𝜏 ::= a | Int | 𝜏1 → 𝜏2 | ⌊e : 𝜖⌋ monomorphic type

a, b ::= . . . type variable

Γ ::= ∅ | Γ, a | Γ, x:𝜎 typing context

Fig. 2. Type stratification

Polytypes 𝜎 can quantify an arbitrary number (including 0) universal variables and, within the

universal quantification, an arbitrary number (including 0) existential variables. This stratification is

enforced through the distinction between 𝜎-types and 𝜖-types. Note that the type ∃ a.∀ b.𝜏 is ruled

out.
8
Top-level monotypes 𝜌 have no top-level quantification. Monotypes 𝜏 include a projection

form ⌊e : 𝜖⌋ that occurs every time an existential is opened, as described in Section 3.1. Universal

and existential variables draw from the same set of variable names, denoted with a or b.

The expressions of X are defined as follows:

x ::= . . . term variable

n ::= . . . integer literal

e ::= h 𝜋 | 𝜆x .e | let x = e1 in e2 | n expression

h ::= x | e | e :: 𝜎 expression head

𝜋 ::= e | 𝜎 argument

Fig. 3. Our surface language, X

This language is a fairly small 𝜆-calculus, with type annotations and 𝑛-ary application (including

type application). The expression h 𝜋1 ... 𝜋n applies a head to a sequence of arguments 𝜋i that can

be expressions or types. The head is either a variable 𝑥 , an annotated expression e :: 𝜎 , or an

expression e that is not an application.
9

An important complication of our type system is that expressions may appear in types: this

happens in the projection form ⌊e : 𝜖⌋. We thus must address how to treat type equality. For

example, suppose term variable x (of type Int) is free in a type 𝜏 ; is 𝜏 [(𝜆y.y) 1 / x] equal to 𝜏 [1 / x]?
8
As usual, stratifying the grammar of types simplifies type inference. In our case, this choice drastically simplifies the

challenge of comparing types with mixed quantifiers. Dunfield and Krishnaswami [2019, Section 2] have an in-depth

discussion of this challenge.

9
Our grammar does not force a head expression h to be something other than an application, but we will consistently

assume this restriction is in force. It would add clutter and obscure our point to bake this restriction in the grammar.
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Γ ⊢∀ e⇐ 𝜎 (Universal type checking)

Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏]
fv(𝜏) ⊆ dom(Γ, 𝑎)
Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌

Γ ⊢ e⇒ 𝜌 Γ ⊢ e⇐ 𝜌 (Type synthesis and type checking)

App

Γ ⊢ℎ h⇒ 𝜎

Γ ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r
𝑒 = exprargs(𝜋)
Γ ⊢∀ ei ⇐ 𝜎i

Γ ⊢ h 𝜋 ⇔ 𝜌r

iAbs

Γ, x:𝜏 ⊢ e⇒ 𝜌

fv(𝜏) ⊆ dom(Γ) 𝑎 fresh
𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋

x
] (see §4.2.3)

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′

cAbs

Γ, x:𝜎1 ⊢∀ e⇐ 𝜎2

fv(𝜎1) ⊆ dom(Γ)
Γ ⊢ 𝜆x .e⇐ 𝜎1 → 𝜎2

Int

Γ ⊢ n⇔ Int

Let

Γ ⊢ e1 ⇒ 𝜌1

𝑎 = fv(𝜌1)\dom(Γ)
Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [e1 / x]

Γ ⊢ℎ h⇒ 𝜎 (Head synthesis)

H-Var

x:𝜎 ∈ Γ
Γ ⊢ℎ x ⇒ 𝜎

H-Ann

Γ ⊢∀ e⇐ 𝜎

fv(𝜎) ⊆ dom(Γ)
Γ ⊢ℎ (e :: 𝜎) ⇒ 𝜎

H-Infer

Γ ⊢ e⇒ 𝜌

Γ ⊢ℎ e⇒ 𝜌

Fig. 4. Type inference for X

That is, does type equality respect 𝛽-reduction? Our answer is “no”: we restrict type equality in

our language to be syntactic equality (modulo 𝛼-equivalence, as usual). We can imagine a richer

type equality relation—which would accept more programs—but this simplest, least expressive

version satisfies our needs. (However, see Aside 2 in Section 7.3 for a wrinkle here.) Adding such

an equality relation is largely orthogonal to the concerns around existential types that draw our

focus.
10

4.2 Type System

The typing rules of our language appear in Figure 4. This bidirectional type system uses two forms

for typing judgments: Γ ⊢ e ⇒ 𝜌 means that, in the type environment Γ, the program e has the

inferred type 𝜌 , while Γ ⊢ e ⇐ 𝜌 means that, in the type environment Γ, e is checked to have

type 𝜌 . We also use a third form to simplify the presentation of the rules: Γ ⊢ e⇔ 𝜌 , which means

that the rule can be read by replacing⇔ with either⇒ or⇐ in both the conclusion and premises.

Although the rules are fairly close to the standard rules of a typed 𝜆-calculus, handling existentials

through packing and opening has an impact on the rules Let and Gen.

10
Our core language FX does need to think harder about this question, in order to prove type safety. See Section 5.1.
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We review the rules in Figure 4 here, deferring the most involved rule, App, until after we discuss

the instantiation judgment ⊢inst, in Section 4.3.

4.2.1 Simple Subsumption. Bidirectional type systems typically rely on a reflexive, transitive

subsumption relation ⩽, where we expect that if e : 𝜎1 and 𝜎1 ⩽ 𝜎2, then e : 𝜎2 is also derivable.

For example, we would expect that ∀ a.a→ a ⩽ Int→ Int. This subsumption relation is then used

when “switching modes”; that is, if we are checking an expression e against a type 𝜎2 where e has a

form resistant to type propagation (the case when e is a function call), we infer a type 𝜎1 for e and

then check that 𝜎1 ⩽ 𝜎2.

However, our type system refers to no such ⩽ relation: we essentially use equality as our

subsumption relation, invoking it implicitly in our rules through the use of a repeated metavariable.

(Though hard to see, the repeated metavariable is the 𝜌r in rule App, when replacing the⇔ in the

conclusion with a⇐.) We get away with this because our bidirectional type-checking algorithm

works over top-level monotypes 𝜌 , not the more general polytype 𝜎 . A type 𝜌 has no top-level

quantification at all. Furthermore, our type system treats all types as invariant—including→. This

treatment follows on from the ideas in Serrano et al. [2020, Section 5.8], which describes how

Haskell recently made its arrow type similarly invariant.

We adopt this simpler approach toward subsumption both to connect our presentation with the

state-of-the-art for type inference in Haskell [Serrano et al. 2020] and also because this approach

simplifies our typing rules. We see no obstacle to incorporating our ideas with a more powerful

subsumption judgment, such as the deep-skolemization judgment of Peyton Jones et al. [2007,

Section 4.6.2] or the slightly simpler co- and contravariant judgment of Odersky and Läufer [1996,

Figure 2].

4.2.2 Checking against a Polytype. Rule Gen, the sole rule for the Γ ⊢∀ e ⇐ 𝜎 judgment, deals

with the case when we are checking against a polytype 𝜎 . If we want to ensure that e has type 𝜎 ,

then we must skolemize any universal variables bound in 𝜎 : these variables behave essentially as

fresh constants while type-checking e. Rule Gen thus just brings them into scope.

On the other hand, if there are existential variables bound in 𝜎 , then we must instantiate these.

If we are checking that e has some type ∃ a.𝜏0, that means we must find some type 𝜏 such that e

has type 𝜏0 [𝜏 / a]. This is very different than the skolemization of a universal variable, where we

must keep the variable abstract. Instead, when checking against ∃ a.𝜖 , we guess a monotype 𝜏 and

check e against the type 𝜖 [𝜏 / a]. Rule Gen simply does this for nested existential quantification

over variables 𝑏. A real implementation might use unification variables, but we here rely on the

rich body of literature [e.g., Dunfield and Krishnaswami 2013] that allows us to guess monotypes

during type inference, knowing how to translate this convention into an implementation using

unification variables.

4.2.3 Abstractions. Rule iAbs synthesizes the type of a 𝜆-abstraction, by guessing the (mono)type

𝜏 of the bound variable and then inferring the type of the body e to be 𝜌 . However, rule iAbs

also can pack existentials. This is necessary to avoid skolem escape: it is possible that the type 𝜌

contains x free. However, it would be disastrous if 𝜆x .e was assigned a type mentioning x, as x is

no longer in scope.

For example, suppose we have Γ = f :Int→ ∃ a.a→ Bool. Now, consider inferring the type 𝜌 in

Γ ⊢ 𝜆x .f x ⇒ 𝜌 . Guessing x : Int, we will infer Γ, x:Int ⊢ f x ⇒ ⌊f x : ∃ a.a→ Bool⌋ → Bool. It is
tempting, then, to say Γ ⊢ 𝜆x .f x ⇒ Int→ ⌊f x : ∃ a.a→ Bool⌋ → Bool, but this is wrong: the type
mentions x free, but Γ does not bind x. Instead, rule iAbs infers Γ ⊢ 𝜆x .f x ⇒ ∃ a.Int→ a→ Bool,
by using a instead of the ill-scoped ⌊f x : ∃ a.a→ Bool⌋.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

An Existential Crisis Resolved 64:13

More generally, we must identify all existential projections within 𝜌 that have x free. These are

replaced with fresh variables 𝑎. We use the notation ⌊𝜌⌋
x
to denote the list of projections in 𝜌 ;

multiple projections of the same expression (that is, multiple occurrences of ⌊e0 : 𝜖0⌋ for some e0

and 𝜖0) are commoned up in this list. Formally,

⌊𝜌⌋
x
= {⌊e : 𝜖⌋ | (⌊e : 𝜖⌋ is a sub-expression of 𝜌) ∧ (x is a free variable in e)} .

The notation 𝜌 [𝑎 / ⌊𝜌⌋
x
] denotes the type 𝜌 where the 𝑎 are written in place of these projections.

Note that this notation is set up backward from the way it usually works, where we substitute some

type for a variable. Here, instead, we are replacing the type with a fresh variable.

In the conclusion of the rule, we existentially quantify the 𝑎, to finally obtain a function type of

the form 𝜏 → ∃𝑎.𝜌 ′.11
The checking rule cAbs is much simpler. We know the type of the bound variable by decomposing

the known expected type 𝜎1 → 𝜎2. We also need not worry about skolem escape because we have

been provided with a well-scoped 𝜎2 result type for our function. The only small wrinkle is the

need to use ⊢∀ in order to invoke rule Gen to remove any quantifiers on the type 𝜎2.

4.2.4 Let Skolem-escape. Rule Let deals with let-expressions, both in synthesis and in checking

modes. It performs standard let-generalization, computing generalized variables 𝑎 by finding the

free variables in 𝜌1 and removing any variables additionally free in Γ. Indeed, all that is unexpected
in this rule is the type substitution in the conclusion.

The problem, like with rule iAbs is the potential for skolem-escape. The variable x might appear

in the type 𝜌2. However, x is out of scope in the conclusion, and thus it cannot appear in the overall

type of the let-expression. One solution to this problem would be to pack all the existentials that fall

out of scope, much like we do in rule iAbs. However, doing so would mean that our bidirectional

type system now infers existential types 𝜖 instead of top-level monomorphic types 𝜌 ; keeping

with the simpler 𝜌 is important to avoid the complications of a non-trivial subsumption judgment.

Hence we choose to replace all occurrences of x inside of projections by the expression e1. This

does not pose a problem since e1 is well-typed according to the premises of the Let rule.

4.2.5 Inferring the Types of Heads. Following Serrano et al. [2020], our system treats 𝑛-ary applica-

tions directly, instead of recurring down a chain of binary applications e1 e2. The head of an 𝑛-ary

application is denoted with h; heads’ types are inferred with the Γ ⊢ℎ h⇒ 𝜎 judgment. Variables

simply perform a context lookup, annotated expressions check the contained expression against the

provided type, and other expressions infer a 𝜌-type. It is understood here that we use rule H-Infer

only when the other rules do not apply, for example, for 𝜆-abstractions.

4.3 Instantiation Semantics

The instantiation rules of Figure 5 present an auxiliary judgment used in type-checking applications.

The judgment Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r means: with in-scope variables Γ, apply function e of

type 𝜎 to arguments 𝜋 requires exprargs(𝜋) (the value arguments) to have types 𝜎 , resulting in an

expression e 𝜋 of type 𝜌r . This judgment is directly inspired by Serrano et al. [2020, Figure 4].

The idea is that we use ⊢inst to figure out the types of term-level arguments to a function in a

pre-pass that examines only type arguments. Having determined the expected types of the term-

level arguments 𝜎 , rule App (in Figure 4) actually checks that the arguments have the correct types.

This pre-pass is not necessary in order to infer the types for existentials, but it sets the stage for

Section 8, where we integrate our design with the current implementation in GHC.

11
Our language works well without this special substitution. Instead, we could have a check that the final inferred type in

rule iAbs is well scoped. However, this extra existential packing is easy enough to add, and so we have.
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Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r (Instantiation judgment)

ITyArg

Γ ⊢inst e 𝜎 ′ : 𝜎 [𝜎 ′ / a] ; 𝜋 { 𝜎 ; 𝜌r
fv(𝜎 ′) ⊆ dom(Γ)

Γ ⊢inst e : ∀ a.𝜎 ; 𝜎 ′, 𝜋 { 𝜎 ; 𝜌r

IArg

Γ ⊢inst e e′ : 𝜎2 ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : (𝜎1 → 𝜎2) ; e
′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r

IAll

𝜋 ≠ 𝜎 ′, 𝜋 ′

Γ ⊢inst e : 𝜎 [𝜏 / a] ; 𝜋 { 𝜎 ; 𝜌r
fv(𝜏) ⊆ dom(Γ)

Γ ⊢inst e : ∀ a.𝜎 ; 𝜋 { 𝜎 ; 𝜌r

IExist

Γ ⊢inst e : 𝜖 [⌊e : ∃ a.𝜖⌋ / a] ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : ∃ a.𝜖 ; 𝜋 { 𝜎 ; 𝜌r

IResult

Γ ⊢inst e : 𝜌r ; [] { [] ; 𝜌r

Fig. 5. Instantiation

Application. Rule ITyArg handles type application by instantiating the bound variable a with

the supplied type argument 𝜎 ′. Rule IArg handles routine expression application simply by remem-

bering that the argument should have type 𝜎1. Note that we do not check that the argument e
′
has

type 𝜎1 here.

Quantifiers. Rule IAll deals with universal quantifiers in the function’s type by instantiating

with a guessed monotype 𝜏 . The first premise is to avoid ambiguity with rule ITyArg; we do not

wish to guess an instantiation when the user provides it explicitly with a type argument.

Rule IExist eagerly opens existentials by substituting a projection in place of the bound variable

a. This is the only place in the judgment where we need the function expression e: whenever we

open an existential type, we must remember what expression has that type, so that we do not

confuse two different existentially packed types.

For example, if f has type Bool→ ∃ b.(b, b→ Int), then the function application f True will be
given the opened pair type:

(⌊f True : ∃ b.(b, b→ Int)⌋, ⌊f True : ∃ b.(b, b→ Int)⌋ → Int)
Rule IResult concludes computing the instantiation in a function application by copying the

function type to be the result type.

The App rule. Having now understood the instantiation judgment, we turn our attention to

ruleApp. After inferring the type 𝜎 for an application head h, 𝜎 gets instantiated, revealing argument

types 𝜎 . Each argument ei is checked against its corresponding type 𝜎i, where the entire function

application expression has type 𝜌r . Rule App operates in both synthesis and checking modes. When

synthesizing, it simply returns 𝜌r from the instantiation judgment; when checking, it ensures

that the instantiated type 𝜌r matches what was expected. We need do no further instantiation or

skolemization because we have a simple subsumption relation.

5 CORE LANGUAGE

Perhaps we can infer existential types using existential projections ⌊e : 𝜖⌋, but how do we know

such an approach is sound? We show that it is by elaborating our surface expressions into a core

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.
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language FX, inspired by a similar language described by Cardelli and Leroy [1990, Section 4], and

we prove the standard progress and preservation theorems of this language. This section presents

FX and states key metatheory results; the following section connects X to FX by presenting our

elaboration algorithm.

The syntax of FX is in Figure 6 and selected typing rules are in Figure 7; full typing rules appear

in the appendix.
12
Note that we use upright Latin letters to denote FX expressions and types; when

we mix X and FX in close proximity, we additionally use colors.

B ::= →| Int | . . . base type

t, r, s ::= a | B t | ∀ a.t | ∃ a.t | ⌊e⌋ type

e, h ::= x | n | 𝜆x:t.e | e1 e2 | Λa.e | e t | pack t, e as t2

| open e | let x = e1 in e2 | e ▷ 𝛾 expression

v ::= n | 𝜆x:t.e | Λa.v | pack t, v as t2 value

𝛾 ::= ⟨t⟩ | sym𝛾 | 𝛾1 ;; 𝛾2 | ⌊𝜂⌋ | 𝛾1
@𝛾2 | projpack t, e as t2 | . . . type coercion

𝜂 ::= e ▷ 𝛾 | step e expression coercion

G ::= ∅ | G, x : t | G, a typing context

Fig. 6. Syntax of the core language, FX

The nub of FX is System F, with fully applied base types B (because they are fully applied, we

do not need to have a kind system) and ordinary universal quantification. We thus omit typing

rules from this presentation that are standard. The inclusion of existential types, pack and open is

fitting for a core language supporting existentials. This language necessarily has mutually recursive

grammars for types and expressions, but the typing rules are not mutually recursive: rule CT-Proj

shows that a projection in a type is well-formed when the expression is well-scoped. (The ⊢ G ok
premise refers to a routine context-well-formedness judgment, omitted.) We do not require the

existential package to be well-typed (though it would be, in practice).

5.1 Coercions

The biggest surprise in FX is its need for type and expression coercions. The motivation for these

can be seen in rule CS-OpenPack. If we are stepping an expression open (pack t, v as∃ a.t2), we
want to extract the value v from the existential package. The problem is that v has the wrong type.

Suppose that v has type t0. Then, we have pack t, v as∃ a.t2 : ∃ a.t2 and open (pack t, v as∃ a.t2) :

t2 [⌊pack t, v as∃ a.t2⌋ / a], according to rule CE-Open. This last type is not syntactically the same

as t0, although it must be that t0 = t2 [t / a] to satisfy the premises of rule CE-Pack. Because the

type of the opened existential does not match the type of the packed value, a naïve reduction rule

like G ⊢ open (pack t, v as t2) −→ v would not preserve types.

There are, in general, two ways to build a type system when encountering such a problem. We

could have a non-trivial type equality relation, where we say that ⌊pack t, e as t2⌋ ≡ t. Doing so

would simplify the reduction rules, but this simplification comes at a cost: our language would now

have a conversion rule that allows an expression of one type t1 to have another type t2 as long as

t1 ≡ t2. This rule is not syntax-directed; accordingly, it is hard to determine whether type-checking

remains decidable. Furthermore, a non-trivial type equality relation makes proofs considerably

more involved. In effect, we are just moving the complexity we see in the right-hand side of a rule

like rule CS-OpenPack into the proofs.

12
https://richarde.dev/papers/2021/exists/exists-extended.pdf
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G ⊢ e : t (Expression typing)

CE-Abs

G, x : t1 ⊢ e : t2

x ∉ fv(t2)
G ⊢ 𝜆x:t1.e : t1 → t2

CE-Let

G ⊢ e1 : t1

G, x : t1 ⊢ e2 : t2

G ⊢ let x = e1 in e2 : t2 [e1 / x]

CE-Pack

G ⊢ t : type
G ⊢ ∃ a.t2 : type
G ⊢ e : t2 [t / a]

G ⊢ pack t, e as∃ a.t2 : ∃ a.t2

CE-Open

G ⊢ e : ∃ a.t
G ⊢ open e : t[⌊e⌋ / a]

CE-Cast

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : t2

G ⊢ t : type (Type well-formedness)

CT-Proj

⊢ G ok fv(e) ⊆ dom(G)
G ⊢ ⌊e⌋ : type

G ⊢ 𝛾 : t1 ∼ t2 (Type coercion typing)

CG-Refl

G ⊢ t : type

G ⊢ ⟨t⟩ : t ∼ t

CG-Sym

G ⊢ 𝛾 : t1 ∼ t2

G ⊢ sym𝛾 : t2 ∼ t1

CG-Trans

G ⊢ 𝛾1 : t1 ∼ t2

G ⊢ 𝛾2 : t2 ∼ t3

G ⊢ 𝛾1 ;; 𝛾2 : t1 ∼ t3

CG-Proj

G ⊢ 𝜂 : e1 ∼ e2

G ⊢ ⌊𝜂⌋ : ⌊e1⌋ ∼ ⌊e2⌋

CG-InstExists

G ⊢ 𝛾1 : (∃ a.t1) ∼ (∃ a.t2)
G ⊢ 𝛾2 : t3 ∼ t4

G ⊢ 𝛾1
@𝛾2 : t1 [t3 / a] ∼ t2 [t4 / a]

CG-ProjPack

G ⊢ pack t, e as t2 : t2

G ⊢ projpack t, e as t2 : ⌊pack t, e as t2⌋ ∼ t

G ⊢ 𝜂 : e1 ∼ e2 (Expression coercion typing)

CH-Coherence

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : e ∼ (e ▷ 𝛾)

CH-Step

G ⊢ e : t

G ⊢ e
′

: t G ⊢ e −→ e
′

G ⊢ step e : e ∼ e
′

G ⊢ e −→ e
′

(Small-step operational semantics)

CS-PackCong

G ⊢ e −→ e
′

G ⊢ pack t, e as t2 −→ pack t, e′ as t2

CS-OpenPack

G ⊢ open (pack t, v as t2) −→ v ▷ ⟨t2⟩@(sym (projpack t, v as t2))

CS-OpenCong

G ⊢ e : t G ⊢ e −→ e
′

G ⊢ open e −→ open e
′ ▷ ⟨t⟩@(sym ⌊step e⌋)

Fig. 7. Selected typing and reduction rules of the core language, FX
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The alternative approach to a non-trivial equality relation is to use explicit coercions, as we have

here. The cost is clutter. Casts sully our reduction steps, and we need to explicitly shunt coercions

in several (omitted, unenlightening) reduction rules—for example, when reducing ((𝜆x:t.e1) ▷ 𝛾) e2

where the cast intervenes between a 𝜆-abstraction and its argument. Despite the presence of these

rules in our operational semantics, coercions can be fully erased: we can write an alternative,

untyped operational semantics that omits coercions entirely. Theorem 7.2 shows that erasure

preserves program behavior.

Both approaches—an enriched definitional equality vs. explicit coercions—are essentially equiv-

alent: we can view explicit coercions simply as an encoding of the derivation of an equality

judgment.
13
We choose explicit coercions both because FX is a purely internal language (and thus

clutter is less noisome) and because it allows for an easy connection to the implementation of the

core language in GHC, based on System FC [Sulzmann et al. 2007], with similar explicit coercions.

The coercion language for FX includes constructors witnessing that they encode an equivalence

relation (rules CG-Refl, CG-Sym, and CG-Trans), along with several omitted forms showing that

the equivalence is also a congruence over types. Coercions also include several decomposition

operations; rule CG-InstExists shows one, used in our reduction rules. The two forms of interest

to use are ⌊𝜂⌋ (rule CG-Proj) and projpack (rule CG-ProjPack). The former injects the equivalence

relation on expressions (witnessed by expression coercions 𝜂) into the type equivalence relation,

and the latter witnesses the equivalence between ⌊pack t, e as t⌋ and its packed type t.

The equivalence relation on expressions is surprisingly simple: we need only the two rules in

Figure 7. These rules allow us to drop casts (supporting a coherence property which states that the

presence of casts is essentially unimportant) and to reduce expressions.

5.2 Metatheory

We prove (almost) standard progress and preservation theorems for this language:

Theorem 5.1 (Progress). If G ⊢ e : t, where G contains only type variable bindings, then one of

the following is true:

(1) there exists e
′
such that G ⊢ e −→ e

′
;

(2) e is a value v; or

(3) e is a casted value v ▷ 𝛾 .

Theorem 5.2 (Preservation). If G ⊢ e : t and G ⊢ e −→ e
′
, then G ⊢ e

′
: t.

In addition, we prove that types can still be erased in this language. Let |e| denote the expression e

with all type abstractions, type applications, packs, opens and casts dropped. Furthermore, overload

−→ to mean the reduction relation over the erased language.

Theorem 5.3 (Erasure). If G ⊢ e −→∗ e
′
, then |e| −→∗ |e′ |.

The proofs largely follow the pattern set by previous papers on languages with explicit coercions

and are unenlightening. They appear, in full, in the appendix.

6 ELABORATION

We now augment our inference rules from Section 4 to describe the elaboration from the surface

languageX into our core FX. The notation⇒ denotes elaboration of a surface term, type or context

into its core equivalent. Some of our rules appear in Figure 8. The rest appear in the appendix. In

order to aid understanding, we use blue for X terms and red for FX terms.

13
Weirich et al. [2017] makes this equivalence even clearer by presenting two proved-equivalent versions of a language, one

with a non-trivial, undecidable type equality relation and another with explicit coercions.
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Γ ⊢∀ e⇐ 𝜎 ⇒ e elaboration of polymorphic expressions

Γ ⊢ e⇔ 𝜌 ⇒ e elaboration of expressions

Γ ⊢ℎ h⇒ 𝜎 ⇒ h elaboration of application heads

Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er elaboration of application spines

𝜎 ⇒ s elaboration of types

Γ ⇒ G elaboration of typing contexts

Elab-Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏] ⇒ e

𝜏 ⇒ t 𝜌 ⇒ r

fv(𝜏) ⊆ dom(Γ, 𝑎)
Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌 ⇒ Λ𝑎.pack t, e as∃𝑏.r

Elab-iAbs

𝑎 fresh
Γ, x:𝜏 ⊢ e⇒ 𝜌 ⇒ e

fv(𝜏) ⊆ dom(Γ)
𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋

x
] 𝜏 ⇒ t

𝜌 ⇒ r 𝜌 ′ ⇒ r
′

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′ ⇒ 𝜆x:t.pack ⌊r⌋
x
, e as∃𝑎.r′

Elab-App

Γ ⊢ℎ h⇒ 𝜎 ⇒ h

Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢ h 𝜋 ⇔ 𝜌r ⇒ er

Elab-IArg

Γ ⊢∀ e′⇐ 𝜎1 ⇒ e
′

Γ ⊢inst e e′ : 𝜎2 ⇒ e e
′

; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : (𝜎1 → 𝜎2) ⇒ e ; e
′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r ⇒ er

Elab-IExist

Γ ⊢inst e : 𝜖 [⌊e : ∃ a.𝜖⌋ / a] ⇒ open e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∃ a.𝜖 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IResult

Γ ⊢inst e : 𝜌r ⇒ er ; [] { [] ; 𝜌r ⇒ er

Fig. 8. Judgments and selected rules for elaborating from X into FX.

The rules in Figure 8 allow packing multiple existentials at once, when given a list of types as

the first argument to pack; see rules Elab-Gen and Elab-iAbs. Rule Elab-Gen checks a surface

expression e against an expected type ∀𝑎.∃𝑏.𝜌 . We see that the result of elaboration uses nested

Λ-abstractions and our nested pack notation to produce an FX expression that has the desired

type. Rule Elab-iAbs echoes rule iAbs, producing an FX expression with packs necessary to

accommodate any projections that mention the bound variable x; recall the special treatment of

such projections from Section 4.2.3.

Rule Elab-App elaborates the head h to h, and then calls the ⊢inst judgment. This judgment takes

the elaborated h as an input (despite its appearance on the right of a⇒). This input of an elaborated

expression is built up as the application spine is checked, to be returned in rule Elab-IResult.

In order to build this elaborated expression as we go, rule Elab-IArg elaborates arguments, in

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.
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contrast to our original rule IArg; rule Elab-App then no longer needs to check these arguments in

a second pass.
14
Rule Elab-IExist is the place where open is introduced, as it open an expression

with an existential type.

The omitted rules all appear in the appendixand broadly follow the pattern set here.

6.1 Tweaking the IExist Rule

In the instantiation judgment for the surface language (Figure 5), rule IExist opens existentials.

That is, given an expression e with an existential type ∃ a.𝜖 , it infers for e the type resulting from

replacing the type variable with the projection ⌊e : ∃ a.𝜖⌋. However, these projections pose a

problem during the elaboration process. Specifically, if we have an application e1 e2 such that

e1 expects an argument whose type mentions ⌊e0 : 𝜖⌋—and e2 indeed has a type mentioning

⌊e0 : 𝜖⌋—we cannot be sure that the application remains well-typed after elaboration. After all,

type-checking in X is non-deterministic, given the way it guesses instantiations and the types of

𝜆-bound variables. Another wrinkle is that ⌊e0 : 𝜖⌋ might appear under binders, making it even

easier for type inference to come to two different conclusions when computing Γ ⊢∀ e0 ⇐ 𝜖 .

There are two approaches to fix this problem: we can require our elaboration process to be

deterministic, or we can modify rule IExist to make sure that projections in the surface language

actually use pre-elaborated core expressions. We take the latter approach, as it is simpler and more

direct. However, we discuss later in this section the possible disadvantages of this choice, and a

route to consider the first one.

Accordingly, we now introduce the following new IExistCore and rule LetCore rules, replacing

rules IExist and rule Let:

IExistCore

Γ ⊢∀ e⇐ ∃ a.𝜖 ⇒ e

Γ ⊢inst e : 𝜖 [⌊e⌋ / a] ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : ∃ a.𝜖 ; 𝜋 { 𝜎 ; 𝜌r

LetCore

Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

𝑎 = fv(𝜌1)\dom(Γ)
Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [Λ𝑎.e1 / x]

Fig. 9. Updated rules to support FX expressions in X types

Now, the elaboration process 𝜏 ⇒ t is indeed deterministic, making⇒ a function on types 𝜏 and

contexts Γ. Having surmounted this hurdle, elaboration largely very straightforward.

6.2 A Different Approach

We may want to refrain from using core expressions inside of projections, because doing so

introduces complexity for the programmer who is not otherwise exposed to the core language. To

wit, X would keep using projections of the form ⌊e : 𝜖⌋, where we understand that Γ ⊢∀ e⇐ 𝜖 in

the ambient context Γ, while FX uses the form ⌊e⌋.
It is vitally important that, if our surface-language typing rules accept a program, the elaborated

version of that program is type-correct. (We call this property soundness; it is Theorem 7.1.) Yet, if

elaboration of types is non-deterministic, we will lose this property, as explained above.

14
Knowledgeable readers will wonder how this new treatment interacts with the Quick-Look algorithm, which critically

depends on waiting to type-check arguments after a quick look at the entire argument spine. The solution is to be lazy: the

elaborated is not needed until after all arguments have been checked. Accordingly, we could, for example, use a mutable

cell to hold the elaborated expression, and then fill in this cell only during the second pass. Our formal presentation here

need not worry about this technicality, however.
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This alternative approach is simply to assume that elaboration is deterministic. Doing so is

warranted because, in practice, a type-checker implementation will proceed deterministically—it

seems far-fetched to think that a real type-checker would choose different types for the same

expression and expected type, if any. In essence, a deterministic elaborator means that we can

consider ⌊e : 𝜖⌋ as a proxy for ⌊e⌋. The first is preferable to programmers because it is written in the

language they program in. However, a type-checker implementation may choose to use the latter,

and thus avoid the possibility of unsoundness from arising out of a non-deterministic elaborator.

7 ANALYSIS

The surface language X allows us to easily manipulate existentials in a 𝜆-calculus while delegating

type consistency to an explicit core language FX. The following theorems establish the soundness

of this approach, via the elaboration transformation ⇒, as well as the general expressivity and

consistency of our bidirectional type system.

7.1 Soundness

If our surface language is to be type safe, we must know that any term accepted in the surface

language corresponds to a well-typed term in the core language:

Theorem 7.1 (Soundness).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then G ⊢ e : s, where Γ ⇒ G and 𝜎 ⇒ s.

(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

Furthermore, in order to eliminate the possibility of a trivial elaboration scheme, we would

want the elaborated term to behave like the surface-language one. We capture this property in this

theorem:

Theorem 7.2 (Elaboration erasure).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then |e | = |e|.
(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then |e | = |e|.
(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then |e | = |e|.

This theorem asserts that, if we remove all type annotations and applications, the X expression

is the same as the FX one.

7.2 Conservativity

Not only do we want our X programs to be sound, but we also want X to be a comfortable language

to program in. As our language is an extension of Hindley-Milner, we know that all the conveniences

programmers are used to in that setting carry over here.

Theorem 7.3 (Conservative extension of Hindley-Milner). If e has no type arguments or

type annotations, and Γ, e, 𝜏 , 𝜎 contain no existentials, then:

(1) (Γ ⊢𝐻𝑀 e : 𝜏) implies (Γ ⊢ e⇒ 𝜏)
(2) (Γ ⊢𝐻𝑀 e : 𝜎) implies

(
Γ ⊢∀ e⇐ 𝜎

)
where ⊢𝐻𝑀 denotes typing in the Hindley-Milner type system, as described by Clément et al. [1986,

Figure 3].

7.3 Stability

The following theorems denote stability properties [Bottu and Eisenberg 2021]. In other words,

they ensure that small user-written transformations do not change drastically the static semantics
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Theorem 7.4 tells us that expanding out a well-typed let remains well typed. However,

if we selectively expand a repeated let, a larger expression may become ill typed. Suppose

we have f ::Int → ∃a. (a, a→ Int) andwrite (snd (f (let x = 5 in x+x))) (fst (f (let x =

5 in x+x))). That expression is a well-typed Int . However, if we inline only one of the lets,
to (snd (f (5 + 5))) (fst (f (let x = 5 in x + x))), we now have an ill-typed expression.

The problem is that our language uses a very fine-grained expression equality relation:

just 𝛼-equivalence. Accordingly, let x = 5 in x + x and 5 + 5 are considered distinct,

and when these expressions appear in types (via existential projections), the types are

different.

The solution is straightforward, if not entirely lightweight: extend the expression

equality relation. Doing so would require a more explicit treatment of equality in our

type inference algorithm (in particular, rule App of Figure 4 would need to invoke the

equality relation), as well as additions to FX to accommodate this new development. It

is not clear whether the added expressiveness are worth the complexity cost, and so we

kept our equivalence relationship simple for ease of presentation.

Aside 2. Selective let-inlining sometimes causes trouble

of our programs. The let-inlining property is specifically permitted by our approach to existentials,

and it is a major feature of our type system.

Theorem 7.4 (let-inlining). If x is free in e2 then:

(Γ ⊢ let x = e1 in e2 ⇒ 𝜌) implies (Γ ⊢ e2 [e1 / x] ⇒ 𝜌)
(Γ ⊢∀ let x = e1 in e2 ⇐ 𝜎) implies (Γ ⊢∀ e2 [e1 / x] ⇐ 𝜎)

Interestingly, the system we present here does not support a small generalization of the let-
inlining property, as we explore in Aside 2.

This next theorem tells us that the order variables appear in an existential quantification does

not affect usage sites:

Theorem 7.5 (Order of Quantification does not matter). Let 𝜌 ′ (resp. 𝜎 ′) be two types that
differ from 𝜌 (resp. 𝜎) only by the ordering of quantified type variables in their (eventual) existential

types. Then:

(1) (Γ ⊢ e⇒ 𝜌) if and only if (Γ ⊢ e⇒ 𝜌 ′)
(2) (Γ ⊢∀ e⇐ 𝜎) if and only if (Γ ⊢∀ e⇐ 𝜎 ′)
Lastly, this theorem tells us that extra, redundant type annotations do not disrupt typability:

Theorem 7.6 (Synthesis implies checking). If Γ ⊢ e⇒ 𝜌 then Γ ⊢ e⇐ 𝜌 .

8 INTEGRATINGWITH TODAY’S GHC AND QUICK LOOK

We envision integrating our design into GHC, allowing Haskell programmers to use existential

types in their programs. Accordingly, we must consider how our work fits with GHC’s latest type-

inference algorithm, dubbed Quick Look [Serrano et al. 2020]. The structure behind our inference

algorithm—with heads applied to lists of arguments instead of nested applications—is based directly

on Quick Look, and it is straightforward to extend our work to be fully backward-compatible with

that design. Indeed, our extension is essentially orthogonal to the innovations of impredicative

type inference in the Quick Look algorithm.
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Γ ⊢∀ e⇐ 𝜎 (Universal type checking)

GenImpredicative

𝜅 fresh 𝜌 ′ = 𝜌 [𝜅 /𝑏]
Γ, 𝑎 ⊢ e : 𝜌 ′ { Θ

𝜌 ′′ = Θ 𝜌 ′

dom (𝜃 ) = fiv (𝜌 ′′)
Γ, 𝑎 ⊢ e⇐ 𝜃 𝜌 ′′

Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌

Fig. 10. Allowing impredicative instantiation in the ⊢∀ judgment

It would take us too far afield from our primary goal—describing type inference for existential

types—to explain the details of Quick Look here. We thus build on the text already written by

Serrano et al. [2020]; readers uninterested in the details may safely skip the rest of this section.

Serrano et al. [2020] explains their algorithm progressively, by stating in their Figures 3 and 4 a

baseline system. That baseline also effectively serves as our baseline here. Then, in their Figure 5,

the authors add a few new premises to specific rules, along with judgments those premises refer to.

Given this modular presentation, we can adopt the same changes: their rule iarg is our rule IArg,

and their rule app-⇓ is our rule App. The only wrinkle in merging these systems is that their

presentation uses a notion of instantiation variable, which Serrano et al. write as 𝜅 . An instantiation

variable is allowed to unify with a polytype, in contrast to an ordinary unification variable, which

must unify with a monotype. Given that impredicative instantiation is not a primary goal of our

work, we choose not to use this approach in our main formal presentation, instead preferring

the more conventional idiom of using guessed 𝜏-types. However, in order to integrate inferred

existentials with Quick Look impredicativity, we must explicitly use instantiation variables in the

rule below.

Since we have a more elaborate notion of polytype, one rule needs adjustment in our system: the

rule implementing the Γ ⊢∀ e⇐ 𝜎 judgment, rule Gen. That rule skolemizes (makes fresh constants

out of) the variables universally quantified in 𝜎 and guesses 𝜏 to instantiate the existentially

quantified variables. In order to allow these instantiations to be impredicative, we must modify the

rule, as in Figure 10.

This rule follows broadly the pattern from rule Gen, but using instantiation variables 𝜅 instead

of guessing 𝜏 . The third premise invokes the Quick Look judgment ⊢ [Serrano et al. 2020, Figure 5]

to generate a substitution Θ. Such a substitution Θ maps instantiation variables 𝜅 to polytypes 𝜎 ;

by contrast, a substitution 𝜃 includes only monotypes 𝜏 in its codomain. The next two premises

of rule GenImpredicative apply the Θ substitution, and then use 𝜃 to eliminate any remaining

instantiation variables 𝜅: the fiv(𝜌 ′′) extracts all the f ree instantiation variables in 𝜌 ′′. Note that
the range of 𝜃 appears unconstrained here; the types in its range are guessed, just like the 𝜏 in

rule Gen.

With this one new rule—along with the changes evident in Figure 5 of Serrano et al.—our system

supports impredicative type inference, and is a conservative extension of their algorithm.

9 DISCUSSION

We have described how our inference algorithm allows users to program with existentials while

avoiding the need to thinking about packing and unpacking. Here, we review some subtleties that

arise as our approach encounters more practical settings.
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9.1 No Declarative (Non-syntax-directed) System with Existentials

When we first set out to understand type inference with existentials better, our goal was to develop

a type system with existential types, unguided type inference (no additional annotation obligations

for the programmer), and principal types. Our assumption was that if this is possible with universal

quantification [Hindley 1969; Milner 1978], it should also be possible for existential quantification.

Unfortunately, it seems such a design is out of reach.

To see why, consider f b = if b then (1, 𝜆y → y + 1) else (True, 𝜆z → 1). We can see that f
can be assigned one of two different types:

(1) Bool → ∃a. (a, Int → Int)
(2) Bool → ∃a. (a, a→ Int)

Neither of these types is more general than the other, and neither seems likely to be ruled out by

straightforward syntactic restrictions (such as the Hindley-Milner type system’s requirement that

all universal quantification be in prenex form).

One possible approach to inference for a definition like f is to use an anti-unification [Pfenning

1991] algorithm to relate the types of (1, 𝜆y → y + 1) and (True, 𝜆z → 1): infer the former to have

type (Int, Int → Int) and the latter to have type (Bool, 𝛼 → Int) for some unknown type 𝛼 . The

goal then is to find some type 𝜏 such that 𝜏 can instantiate to either of these two types: this is

anti-unification. The problem is, in this case, 𝛼 : we get different results depending on whether 𝛼

becomes Int or Bool.
We might imagine a way of choosing between the two hypothetical types for f , above, but

any such restriction would break the desired symmetry and elegance of a declarative system that

allows arbitrary generalization and specialization. Instead, we settle for the practical, predictable

bidirectional algorithm presented in this paper, leaving the search for a more declarative approach

as an open problem—one we think unlikely to have a satisfying solution.

9.2 Class Constraints on Existentials

The algorithm we present in this paper works with a typing context storing the types of bound

variables. In full Haskell, however, we also have a set of constraint assumptions, and accepting

some expressions requires proving certain constraints. A type system with these assumptions

and obligations is often called a qualified type system [Jones 1992]. Our extension to support both

universal and existential qualified types is in Figure 11.

This extension introduces type classes C and constraints Q. Constraints are applied type classes

(like Show Int), and perhaps others; the details are immaterial. Instead, we refer to an abstract

logical entailment relation⊩, which relates assumptions and the constraints they entail. Universally

quantified types 𝜎 can now require proving a constraint: to use e : Q ⇒ 𝜎 , the constraint Q must

hold. Existentially quantified types 𝜖 can now provide the proof of a constraint: the expression

e : Q ∧ 𝜖 contains evidence that Q holds. Assumed constraints appear in contexts Γ.15

The surprising feature here is that we have a new form of assumption, ⌊e : 𝜖⌋. This assumption

is allowed only when 𝜖 has the form Q ∧ 𝜖 ′; the assumed constraint is Q. However, by including

the expression e that proves Q in the context, we remember how to compute Q when it is required.

9.2.1 Static Semantics. Examining the typing rules, we see rule GenQualified assumes Q1 as

a given (following the usual treatment of givens in qualified type systems) and also assumes an

arbitrary list of projections ⌊e : 𝜖⌋. This arbitrary assumption is quite like how rule Gen assumes

15
Other presentations of qualified type systems frequently have a judgment that looks like 𝑃 | Γ ⊢ 𝑒 : 𝜌 , or similar,

with a separate set of logical assumptions 𝑃 . Because our assumptions may include expressions, we must mix the logical

assumptions with variable assumptions right in the same context Γ.
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C ::= . . . type class

Q ::= C 𝜏 | . . . constraint

𝜎 ::= 𝜖 | ∀ a.𝜎 | Q ⇒ 𝜎 universally quantified type

𝜖 ::= 𝜌 | ∃ b.𝜖 | Q ∧ 𝜖 existentially quantified type

Γ ::= ∅ | Γ, a | Γ, x:𝜎 | Γ,Q | Γ, ⌊e : 𝜖⌋ typing context

Γ ⊩ Q logical entailment

GenQualified

Γ′ = Γ, 𝑎,Q1, ⌊e : Q ∧ 𝜖⌋
Γ′ ⊢∀ e⇐ Q ∧ 𝜖 e ∈ e0

Γ′ ⊢ e0 ⇐ 𝜌 [𝜏 /𝑏]
Γ′ ⊩ Q2 [𝜏 /𝑏]

Γ ⊢∀ e0 ⇐ (∀𝑎.Q1 ⇒ ∃𝑏.Q2 ∧ 𝜌)

IGiven

Γ ⊢inst e : 𝜖 ; 𝜋 { 𝜎 ; 𝜌r
⌊e : Q ∧ 𝜖⌋ ∈ Γ

Γ ⊢inst e : Q ∧ 𝜖 ; 𝜋 { 𝜎 ; 𝜌r

IWanted

Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r
Γ ⊩ Q

Γ ⊢inst e : Q ⇒ 𝜎 ; 𝜋 { 𝜎 ; 𝜌r

Fig. 11. Type system extension to support existentially packed class constraints

types 𝜏 to replace the existential variables 𝑏. To prevent the type system from working in an

unbounded search space for assumptions to make, the expressions e must be sub-expressions of

our checked expression e0.

The instantiation judgment ⊢inst must also accommodate constraints. When, in rule IGiven, it

comes across an expression whose type includes a packed assumption Q ∧ 𝜖 , it checks to make sure

that assumptionwas included in Γ. The design here requiring an arbitrary guess of assumptions, only

to validate the guess later, is merely because our presentation is somewhat declarative. By contrast,

an implementation would work by emitting constraints and solving them (that is, computing ⊩)
later [Pottier and Rémy 2005]; when the constraint-generation pass encounters an expression of

type Q ∧ 𝜖 , it simply emits the constraint as a given. Rule IWanted is a straightforward encoding

of the usual behavior of qualified types, where the usage of an expression of type Q ⇒ 𝜎 requires

proving Q.

9.2.2 Dynamic Semantics. An interesting new challenge with packed class constraints is that class

constraints are not erasable. In practice, a function pretty of type Pretty a ⇒ a → String (§2.3)

takes two runtime arguments: a dictionary [Hall et al. 1996] containing implementations of the

methods in Pretty , as well as the actual, visible argument of type a. When this dictionary comes

from an existential projection, the expression producing the existential will have to be evaluated.

For example, suppose we have mk :: Bool → ∃a. Pretty a ∧ a and call pretty (mk True). Calling
pretty requires passing the dictionary giving the the implementation of the function at the specific

type pretty is instantiated at (⌊mk True :: ∃a. Pretty a ∧ a⌋, in this case). Getting this dictionary

requires evaluating mk True. Naïvely, this means mk True would be evaluated twice. This makes

some sense if we think of Q ∧ 𝜖 as the type of pairs of a dictionary for Q and the inhabitant of 𝜖 : the

naïve interpretation of pretty (mk True) thus is like calling pretty (fst (mk True)) (snd (mk True)).
We do not address how to do better here, as standard optimization techniques can apply to improve

the potential repeated work. Once again, purity works to our advantage here, in that we can be

assured that commoning up the calls to mk True does not introduce (or eliminate) effects.

9.3 Relevance and Existentials

One of the primary motivations for this work is to set the stage for an eventual connection between

Liquid Haskell [Vazou et al. 2014] and the rest of Haskell’s type system. A Liquid Haskell refinement
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type is exemplified by {v :: Int | v ⩾ 0}; any element of such a type is guaranteed to be non-

negative. Yet what would it mean to have a function return such a type? To be concrete, let us

imaginemk ::Bool → {v :: Int | v ⩾ 0}. This function would return a value v of type Int , along with
a proof that v ⩾ 0: this is a dependent pair, or an existential package. Thus, we can rephrase the

type of mk to be Bool → ∃(v :: Int). Proof (v ⩾ 0), where Proof q encodes a proof of the logical

property q.
However, our new form of existential is different than the others considered in this paper. Here,

the relevant part is the first component, not the second. That is, we want to be able to project out

v :: Int at runtime, discarding the compile-time proof that v ⩾ 0.

The core language presented in this paper cannot, without embellishment, support relevant

first components of existentials. In other words, ⌊e : 𝜖⌋ is always a compile-time type, never a

runtime term. Nevertheless, existing approaches to deal with relevance will work in this new

setting. Haskell’s ∀ construct universally quantifies over an irrelevant type. Yet, work on dependent

Haskell [Eisenberg 2016; Gundry 2013; Weirich et al. 2017] shows how we can make a similar,

relevant construct. Similar approaches could work in a core language modeled on FX. Indeed,
other dependently typed languages, such as Coq, Agda, and Idris support existential packages with

relevant dependent components.

The big step our current work brings to this story is type inference. Whether relevant or not, we

would still want existential packages to be packed and unpacked without explicit user direction,

and we would still want type inference to have the properties of the algorithm presented in this

paper. In effect, the choice of relevance of the dependent component is orthogonal to the concerns

in this paper. We are thus confident that our approach would work in a setting with relevant types.

10 RELATEDWORK

There is a long and rich body of literature informing our knowledge of existential types. We review

some of the more prominent work here.

History. Existential types were present from the beginning in the design of polymorphic pro-

gramming languages, present in Girard’s System F [Girard 1972] and independently discovered

by Reynolds [1974], though in a less expressive form. Mitchell and Plotkin [1988] recognized the

ability of existential types to model abstract datatypes and remarked on their connection with the

Σ-types of Martin-Löf type theory [Martin-Löf 1975]. They proposed an elimination form, called

abstype, that is equivalent to the now standard unpack.
Cardelli and Leroy [1990] compared Mitchell and Plotkin’s unpack based approach to various

calculi with projection-based existentials. Their “calculus with a dot notation” includes the ability

for the type language to project the type component from term variables of an existential type. At

the end of the report (Section 4), they generalize to allow arbitrary expressions in projections. It is

this language that is most similar to our core language. They also note a number of examples that

are expressible only in this language.

Integration with type inference. Full type checking and type inference for domain-free System F

with existential types is known to be undecidable [Nakazawa and Tatsuta 2009; Nakazawa et al.

2008]. As a result, several language designers have used explicit forms such as datatype declarations

or type annotations to extend their languages with existential types.

The datatype-based version of existentials found in GHC was first suggested by Perry [1991]

and implemented in Hope+. It was formalized by Läufer and Odersky [1994] and implemented in

the Caml Light compiler for ML, along with the Haskell B compiler [Augustsson 1994].

The Utrecht Haskell Compiler (UHC) also supports a version of existential type [Dijkstra 2005],

in a form that does not require the explicit connection to datatypes found in GHC. As in this work,
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values of existential types can be opened in place, without the use of an unpack term. However,

unlike here, UHC generates a fresh type variable for the abstracted type with each use of open. As
a result, UHC does not need the form of dependent types that we propose, but also cannot express

some of the examples allowed by our system (§3.3).

Leijen [2006] describes an extension of MLF [Le Botlan and Rémy 2003] with first-class existential

types. Like this work, programmers never needed to add explicit pack or unpack expressions.

However, because the type system was based on MLF, polymorphic types include instantiation

constraints and the type-inference algorithm is very different from that used by GHC. In contrast,

our work requires only a small extension of GHC’s most recent implementation of first-class

polymorphism. Furthermore, Leijen does not describe a translation from his source language to an

explicitly typed core language; a necessary implementation step for GHC.

Dunfield and Krishnaswami [2019] extend a bidirectional type system with indexes in existential

types in order to support GADTs. As in this work, the introduction and elimination of existentials

is implicit and determined by type annotations. Existentials are introduced via subsumption and

eliminated via pattern matching. As a result, this type system has the same scoping limitations as

one based on unpack.
In other contexts, if the domain of types that existentials are allowed to quantify over is restricted,

more aggressive type inference is possible. For example, Tate et al. [2008] restrict existentials to

hide only class types and develop a type-inference framework for a small object-oriented typed

assembly language.

Module systems. This paper also relates to work on ML-style module systems. We do not summa-

rize that field here but mention some papers that are particularly inspirational or relevant.

MacQueen [1986] noted the deficiencies of Mitchell and Plotkin [1988] with respect to expressing

modular structure. This work proposed the original form of the ML module system as a dependent

type system based on strong Σ-types. As in our system,modules support projections of the abstracted

type and values. However, unlike this work, the ML module language supports additional type

system features: a phase separation between the compile-time and runtime parts of the language,

a treatment of generativity which determines when module expressions should and should not

define new types, etc, as described in Harper and Pierce [2005]. We do not intend to use this type

system to express modular structure.

F-ing modules [Rossberg et al. 2014] present a formalization of ML modules using existential

types and a translation of a module language into System 𝐹𝜔 augmented with pack and unpack.

Our approach is similar to theirs, in that we also use a translation of a surface language into our

FX. However, because the ML module system includes a phase separation, our concerns about

strictness do not apply in that setting. As a result they can target the non-dependent language 𝐹𝜔
and use unpack as their elimination form. Rossberg [2015] extends the source language to a more

uniform design while still retaining the translation to a non-dependent core calculus.

Montagu and Rémy [2009] present an extension of System F to compute open existential types.

They introduce the idea of decomposing the usual explicit pack and unpack constructs of System F,

and we were inspired by those ideas to design the type system of our implicit surface language with

opened existentials. Interestingly, for a long time, it was unknown whether full abstraction could

be achieved with strong existentials. Crary [2017] plugged this hole, proving Reynold’s abstraction

theorem for a module calculus based on strong Σ-types.

11 CONCLUSION

By leveraging strong existential types, we have presented a type-inference algorithm that can infer

introduction and elimination sites for existential packages. Users can freely create and consume
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existentials with no term-level annotations. The type annotation burden is small, and it dovetails

with programmers’ current expectations around bidirectional type inference. The algorithm we

present is designed to integrate well with GHC/Haskell’s state-of-the-art approach to type inference,

the Quick Look algorithm [Serrano et al. 2020].

In order to prove our approach sound, we include an elaboration into a type-safe core language,

inspired by Cardelli and Leroy [1990] and supporting the usual progress and preservation proofs.

This core language is a small extension on System FC, the current core language implemented

within GHC, and thus is suitable for implementation.

Beyond just soundness, we prove that inlining a let-binding preserves types, a non-trivial

property in a type system with inferred existential types. We also prove that our type-inference

algorithm is a conservative extension of a basic Hindley-Milner type system.

We believe and hope that our forthcoming implementation within GHC—in active development

at the time of writing—will enable programmers to verify more aspects of their programs, even

when that verification requires the use of existential types. We also hope that this new feature will

provide a way forward to integrate the user-facing success of Liquid Haskell with GHC’s internal

language and optimizer.
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A ELABORATION RULES

We first extend the FX grammar to include arguments:

p ::= e | t argument

Γ ⊢∀ e⇐ 𝜎 ⇒ e (Elaboration for polymorphic expressions)

Elab-Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏] ⇒ e

𝜏 ⇒ t 𝜌 ⇒ r

fv(𝜏) ⊆ dom(Γ, 𝑎)
Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌 ⇒ Λ𝑎.pack t, e as∃𝑏.r

Γ ⊢ e⇒ 𝜌 ⇒ e Γ ⊢ e⇐ 𝜌 ⇒ e (Elaboration for expressions)

Elab-App

Γ ⊢ℎ h⇒ 𝜎 ⇒ h

Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢ h 𝜋 ⇔ 𝜌r ⇒ er

Elab-iAbs

𝑎 fresh
Γ, x:𝜏 ⊢ e⇒ 𝜌 ⇒ e

fv(𝜏) ⊆ dom(Γ)
𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋

x
] 𝜏 ⇒ t

𝜌 ⇒ r 𝜌 ′ ⇒ r
′

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′ ⇒ 𝜆x:t.pack ⌊r⌋
x
, e as∃𝑎.r′

Elab-cAbs

Γ, x:𝜎1 ⊢∀ e⇐ 𝜎2 ⇒ e

fv(𝜎1) ⊆ dom(Γ)
𝜎1 ⇒ s1

Γ ⊢ 𝜆x .e⇐ 𝜎1 → 𝜎2 ⇒ 𝜆x:s1 .e

Elab-LetCore

Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

𝑎 = fv(𝜌1)\dom(Γ)
Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2 ⇒ e2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [Λ𝑎.e1 / x] ⇒ let x = Λ𝑎.e1 in e2

Γ ⊢ℎ h⇒ 𝜎 ⇒ h (Elaboration for heads)

Elab-Var

x:𝜎 ∈ Γ
Γ ⊢ℎ x ⇒ 𝜎 ⇒ x

Elab-Ann

Γ ⊢∀ e⇐ 𝜎 ⇒ e

fv(𝜎) ⊆ dom(Γ)
Γ ⊢ℎ (e :: 𝜎) ⇒ 𝜎 ⇒ e

Elab-Infer

Γ ⊢ e⇒ 𝜌 ⇒ e

Γ ⊢ℎ e⇒ 𝜌 ⇒ e

Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er (Elaboration for instantiation)

Elab-ITyArg

𝜎 ′ ⇒ s
′

Γ ⊢inst e 𝜎 ′ : 𝜎 [𝜎 ′ / a] ⇒ e s
′

; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∀ a.𝜎 ⇒ e ; 𝜎 ′, 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IArg

Γ ⊢∀ e′⇐ 𝜎1 ⇒ e
′

Γ ⊢inst e e′ : 𝜎2 ⇒ e e
′

; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : (𝜎1 → 𝜎2) ⇒ e ; e
′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r ⇒ er
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Elab-IAll

𝜏 ⇒ t 𝜋 ≠ 𝜎 ′, 𝜋 ′

Γ ⊢inst e : 𝜎 [𝜏 / a] ⇒ e t ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∀ a.𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IExistCore

Γ ⊢inst e : 𝜖 [⌊e⌋ / a] ⇒ open e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∃ a.𝜖 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IResult

Γ ⊢inst e : 𝜌r ⇒ er ; [] { [] ; 𝜌r ⇒ er

𝜎 ⇒ s (Elaboration for types)

ElabT-ForAll

𝜎 ⇒ s

∀ a.𝜎 ⇒ ∀ a.s

ElabT-Exists

𝜖 ⇒ t

∃ a.𝜖 ⇒ ∃ a.t

ElabT-Arrow

𝜎1 ⇒ s1 𝜎2 ⇒ s2

𝜎1 → 𝜎2 ⇒ s1 → s2

ElabT-Var

a ⇒ a

ElabT-ProjCore

⌊e⌋ ⇒ ⌊e⌋

Γ ⇒ G (Elaboration for contexts)

ElabC-Nil

∅⇒ ∅

ElabC-TyVar

Γ ⇒ G

Γ, a ⇒ G, a

ElabC-Var

Γ ⇒ G 𝜎 ⇒ s

Γ, x:𝜎 ⇒ G, x : s

In a small abuse of notation, we write (for example, in rule Elab-iAbs) a list of types in a pack
construct to denote nested packs. Formally, for e of type r[t /𝑎], with t = t1 ... tn and 𝑎 = a1 ... an,

the construction is defined recursively by:

pack t1 ... tn, e as∃ a1 ... an .r = pack t1, (pack t2 ... tn, e as∃ a2 ... an .r[t1 / a1]) as∃ a1 a2 ... an .r

Define erasure on X terms by the following equations:

|n| = n

|x | = x

|e :: 𝜎 | = |e |
|h 𝜋, e | = |h 𝜋 | |e |
|h 𝜋, 𝜎 | = |h 𝜋 |
|𝜆x .e | = 𝜆x .|e |

|let x = e1 in e2 | = let x = |e1 | in |e2 |

Theorem A.1 (Elaboration erasure (Theorem 7.2)).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then |e | = |e|.
(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then |e | = |e|.
(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then |e | = |e|.
(4) If Γ ⊢ℎ h⇒ 𝜎 ⇒ h, then |h| = |h|.
(5) If Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ e0 and |e | = |e|, then |e 𝜋 | = |e0 |.

Proof. By straightforward induction on the elaboration judgments. □
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B PROOFS ABOUT OUR SURFACE LANGUAGE, X

Theorem B.1 (Soundness).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then G ⊢ e : s, where Γ ⇒ G and 𝜎 ⇒ s.

(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

(4) If Γ ⊢ℎ h⇒ 𝜎 ⇒ h, then G ⊢ h : s, where Γ ⇒ G and 𝜎 ⇒ s.

(5) If Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er and G ⊢ h : s, then G ⊢ er : rr where Γ ⇒ G, 𝜎 ⇒ s

and 𝜌r ⇒ rr .

Proof. By (mutual) structural induction on the typing rule. The full set of rules can be found in

Annex A.

Rule Elab-Gen From the premise: Γ, 𝑎 ⊢ e ⇐ 𝜌 [𝜏 /𝑏] ⇒ e, where 𝜏 ⇒ t and 𝜌 ⇒ r. By

induction hypothesis, G, 𝑎 ⊢ e : r[t /𝑏]. By successive applications of rule CE-Pack we get

G, 𝑎 ⊢ pack t, e as∃𝑏.r : ∃𝑏.r. Then by successive applications of rule CE-Tabs we get the

result: G ⊢ Λ𝑎.pack t, e as∃𝑏.r : ∀𝑎.∃𝑏.r.
Rule Elab-App Inference and synthesis are treated at the same time by mutual induction. By

induction hypothesis, G ⊢ h : s where 𝜎 ⇒ s. Then by induction hypothesis (case (5)), we

obtain G ⊢ er : rr .

Rule Elab-iAbs By induction hypothesis, G, x : t ⊢ e : r. By applications of rule CE-Pack

we obtain G, x : t ⊢ pack ⌊r⌋
x
, e as∃𝑎.r′ : ∃𝑎.r′ where r

′ = r[𝑎 / ⌊r⌋
x
]. We conclude by

applying rule CE-Abs where the premise x ∉ fv(∃𝑎.r′) is verified by construction of r
′
and

definition of ⌊r⌋
x
.

Rule Elab-cAbs By induction hypothesis and rule CE-App.

Rule Elab-LetCore Inference and synthesis are treated at the same time. By induction hy-

pothesis and rule rule CE-Let.

Rule Elab-Var Since x:𝜎 ∈ Γ, we have x : s ∈ G and we conclude by rule CE-Var.

Rule Elab-Ann By induction hypothesis.

Rule Elab-Infer By induction hypothesis.

We see the instantiation judgment for elaboration as a bottom-up computation initialized, in

rule Elab-App, by a head h such that G ⊢ h : s. Hence we just prove that going "up" in the

derivation tree maintains the invariant that the first core expression e is well-typed (i.e. that

Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er implies G ⊢ e : s where 𝜎 ⇒ s).

Rule Elab-ITyArg Assuming that G ⊢ e : ∀ a.s, by rule CE-Tapp: G ⊢ e s
′

: s[s′ / a].
Rule Elab-IArg Assuming that G ⊢ e : s1 → s2 and Γ ⊢∀ e

′ ⇐ 𝜎1 ⇒ e
′
. By induction

hypothesis, G ⊢ e
′

: s1 where 𝜎1 ⇒ s1. By rule CE-App we obtain G ⊢ e e
′

: s2.

Rule Elab-IAll Assuming that G ⊢ e : ∀ a.s. By rule CE-Tapp, we obtain G ⊢ e t : s[t / a].
Rule Elab-IExistCore Assuming that G ⊢ e : ∃ a.t where 𝜖 ⇒ t. By rule CE-Open: G ⊢

open e : t[⌊e⌋ / a].
Finally, at the top of the derivation tree, rule Elab-IResult ensures that this invariant translates to

the result of the computation, that is, to the second core expression er and the result type 𝜌r such

that G ⊢ er : rr with 𝜌r ⇒ rr . □

Theorem B.2 (Conservative extension of Clément et al. [1986]). If e has no type arguments

or type annotations, and Γ, e, 𝜏 , 𝜎 contain no existentials, then:

(1) (Γ ⊢𝐻𝑀 e : 𝜏) implies (Γ ⊢ e⇒ 𝜏)
(2) (Γ ⊢𝐻𝑀 e : 𝜎) implies

(
Γ ⊢∀ e⇐ 𝜎

)
Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

An Existential Crisis Resolved 64:33

where ⊢𝐻𝑀 denotes typing in the Hindley-Milner type system, as described by Clément et al. [1986,

Figure 3].

Proof. Proceed by induction on the length of the derivation for Γ ⊢𝐻𝑀 e : 𝜏 and case analysis

on e.

e = x: The rule used is C_Var. From its premise we get x:∀𝑎.𝜏 ′ ∈ Γ, with 𝜏 = 𝜏 ′[𝜏 /𝑎]. In our

type system, we can type Γ ⊢ℎ x ⇒ ∀𝑎.𝜏 with H-Var. Then the instantiation judgment gives

us Γ ⊢inst x : ∀𝑎.𝜏 ′ ; [] { [] ; 𝜏 as the IAll rule will be used to instantiate ∀𝑎.𝜏 with 𝜏 . Finally
we apply App to obtain Γ ⊢ x ⇒ 𝜏 .

e = 𝜆x .e′: Since there are no existentials in 𝜏 = 𝜏1 → 𝜏2, hence in 𝜏2, the iAbs rule is the same

as the usual C_Abs rule, therefore we conclude by induction.

let x = e1 in e2: Without existentials, the Let rule is the same as applying the C_Gen and C_Let

rules at the same time.

e = h e1 ... en: The type of ℎ is 𝜏1 → ... → 𝜏n → 𝜏 . By applying the induction hypothesis on the

successive premises obtained by inversing the C_App rules used to type e, we get Γ ⊢ ei ⇒ 𝜏i
for all 𝑖 , hence by Theorem 7.6: Γ ⊢ ei ⇐ 𝜏i. The instantiation judgment, given as input

h : 𝜏1 → ... → 𝜏n → 𝜏 and the list of arguments e1 ... en, outputs the list of types 𝜏1 ... 𝜏n and

the return type 𝜏 . Hence we can apply App.

□

Theorem B.3 (Synthesis implies checking). If Γ ⊢ e⇒ 𝜌 then Γ ⊢ e⇐ 𝜌 .

Proof. Proceed by induction on the typing judgment Γ ⊢ e⇒ 𝜌 .

Rule iAbs: By inversion and applying the induction hypothesis, we get Γ, x:𝜏 ⊢ e⇐ 𝜌 . Hence

by rule Gen, Γ, x:𝜏 ⊢∀ e⇐ ∃𝑎.𝜌 ′ and we conclude by rule cAbs.

Rule Let and rule App: Same rules for synthesis and checking.

□

Theorem B.4 (Order of Quantification does not matter). Let 𝜌 ′ (resp. 𝜎 ′) be two types that
differ from 𝜌 (resp. 𝜎) only by the ordering of quantified type variables in their (eventual) existential

types. Then:

(1) (Γ ⊢ e⇒ 𝜌) if and only if (Γ ⊢ e⇒ 𝜌 ′)
(2) (Γ ⊢∀ e⇐ 𝜎) if and only if (Γ ⊢∀ e⇐ 𝜎 ′)

Proof. In inference mode, the only rule that packs existentials is rule iAbs. This rule packs all

the possible type variables at the same time, hence we see that their ordering does not matter. It is

trivial therefore to choose one ordering or the other, to go from type 𝜌 to type 𝜌 ′.
In checking mode, rule Gen also does several packs at once, whose ordering does not matter. □

Lemma B.5. If 𝑎 ∉ dom (Γ)
(1) If Γ ⊢∀ e⇐ 𝜎 then 𝑎 ∉ fv (e).
(2) If Γ ⊢ e⇒ 𝜌 then 𝑎 ∉ fv (e).
(3) If Γ ⊢ℎ h⇒ 𝜎 then 𝑎 ∉ fv (h ).

Proof. By structural induction on the derivation.

Rule Gen: By inversion, Γ, 𝑎′ ⊢ e⇐ 𝜌 [𝜏 /𝑏]. By 𝛼-equivalence, it is permissible to choose the

𝑎′ fresh, such that 𝑎 and 𝑎′ do not intersect. Hence, we have 𝑎 ∉ dom (Γ, 𝑎′) and by induction
hypothesis 𝑎 ∉ fv (e).
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Rule App: By induction hypothesis, we have 𝑎 ∉ fv (h ) as well as 𝑎 ∉ fv (ei) for all 𝑖 . Since
Γ ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r , we also know thanks to the scoping rule of rule ITyArg that for

every 𝜎 ′ ∈ 𝜋 , fv(𝜎 ′) ⊆ dom(Γ). So since 𝑎 ∉ dom (Γ) we conclude that 𝑎 ∉ fv (h 𝜋).
Rule iAbs: Since fv(𝜏) ⊆ dom(Γ), we have 𝑎 ∉ dom (Γ, x:𝜏) and by induction hypothesis

𝑎 ∉ fv (e), which concludes.

Rule cAbs: Since fv(𝜎1) ⊆ dom(Γ), we conclude by induction hypothesis.

Rule LetCore By induction hypothesis𝑎 ∉ fv (e1). Consider𝑎′ = fv(𝜌1)\dom(Γ) and Γ, x:∀𝑎′.𝜌1 ⊢
e2 ⇔ 𝜌2. By definition of the 𝑎′, 𝑎 ∉ dom (Γ, x:∀𝑎′.𝜌1) so by induction hypothesis 𝑎 ∉ fv (e2)
which concludes.

Rule H-Var: There are no type variables in x.

Rule H-Ann: The scoping condition fv(𝜎) ⊆ dom(Γ) with the induction hypothesis ensures

the result.

Rule H-Infer: By induction hypothesis.

□

Lemma B.6. Assuming 𝑎 ∉ dom (Γ) and fv(𝜏) ⊆ dom(Γ).
(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then Γ ⊢∀ e⇐ 𝜎 [𝜏 /𝑎] ⇒ e[t /𝑎], where 𝜏 ⇒ t.

(2) If Γ ⊢ℎ h⇒ 𝜎 ⇒ h, then Γ ⊢ℎ h⇒ 𝜎 [𝜏 /𝑎] ⇒ h[t /𝑎], where 𝜏 ⇒ t.

(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then Γ ⊢ e⇐ 𝜌 [𝜏 /𝑎] ⇒ e[t /𝑎], where 𝜏 ⇒ t.

(4) If Γ ⊢ℎ h⇒ 𝜎 [𝜏 /𝑎] ⇒ h[t /𝑎] where 𝜏 ⇒ t and Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er , then

Γ ⊢inst h : 𝜎 [𝜏 /𝑎] ⇒ e[t /𝑎] ; 𝜋 { 𝜎 [𝜏 /𝑎] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎] where 𝜏 ⇒ t.

Proof. By structural induction on elaboration derivations.

Rule Elab-Gen: Since 𝑎 ∉ dom (Γ, 𝑎′), by induction hypothesis Γ, 𝑎′ ⊢ e ⇐ 𝜌 [𝜏 ′ /𝑏] ⇒
e[t /𝑎] where𝜏 ⇒ t. By rule Elab-Gen Γ ⊢∀ e⇐ ∀𝑎′.∃𝑏.𝜌 [𝜏 /𝑎] ⇒ Λ𝑎.pack t

′
, e[t /𝑎] as∃𝑏.r[t /𝑎]

where𝜏 ′ ⇒ t

′
. Since fv(𝜏 ′) ⊆ dom(Γ, 𝑎′) and𝑎 ∉ dom (Γ),Λ𝑎.pack t

′
, e[t /𝑎] as∃𝑏.r[t /𝑎] =

(Λ𝑎.pack t

′
, e as∃𝑏.r) [t /𝑎] which concludes.

Rule Elab-App: By induction hypothesis and case (4) of the Lemma.

Rule Elab-iAbs: By induction hypothesis Γ, x:𝜏 ⊢ e ⇒ 𝜌 [𝜏 /𝑎] ⇒ e[t /𝑎]. We find that,

since fv(𝜏) ⊆ dom(Γ), 𝜌 [𝜏 /𝑎] [𝑎′ / ⌊𝜌 [𝜏 /𝑎]⌋
x
] = 𝜌 [𝑎′ / ⌊𝜌⌋

x
] [𝜏 /𝑎]. So by rule Elab-iAbs,

we obtain Γ ⊢ 𝜆x .e ⇒ 𝜏 → ∃𝑎′.𝜌 ′[𝜏 /𝑎] ⇒ 𝜆x:t.pack ⌊r⌋
x
, e[t /𝑎] as∃𝑎′.r′[t /𝑎] which

concludes since 𝜆x:t.pack ⌊r⌋
x
, e[t /𝑎] as∃𝑎′.r′[t /𝑎] = (𝜆x:t.pack ⌊r⌋

x
, e as∃𝑎′.r′) [t /𝑎].

Rule Elab-cAbs: By induction hypothesis.We also use fv(𝜎1) ⊆ dom(Γ) to prove 𝜆x:s1 .e[t /𝑎] =
(𝜆x:s1 .e) [t /𝑎].

Rule Elab-LetCore: After remarking that by construction of 𝑎′ = fv(𝜌1)\dom(Γ), ∀𝑎′.𝜌1 =

(∀𝑎′.𝜌1) [𝜏 /𝑎], we conclude by induction hypothesis.

Rule Elab-Var: Since 𝑎 ∉ dom (Γ), this means the 𝑎 do not appear in 𝜎 hence 𝜎 [𝜏 /𝑎] = 𝜎

and we are done.

Rule Elab-Ann: By induction hypothesis, and using the fact that fv(𝜏) ⊆ dom(Γ).
Rule Elab-Infer: By induction hypothesis.

To prove case (4) of the Lemma, we go through the derivation tree for Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 {
𝜎 ; 𝜌 ⇒ er and transform it by applying the substitution [𝜏 /𝑎] at every intermediary step. We

show that it is does not change the result, since this substitution does not affect the application of

the rules.

Rule Elab-ITyArg: Since fv(𝜎 ′) ⊆ dom(Γ) and 𝑎 ∉ dom (Γ), we conclude by noting that

𝜎 [𝜏 /𝑎] [𝜎 ′ / a] = 𝜎 [𝜎 ′ / a] [𝜏 /𝑎].
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Rule Elab-IArg: By case (1) of the Lemma, from Γ ⊢∀ e
′ ⇐ 𝜎1 ⇒ e

′
we obtain Γ ⊢∀ e

′ ⇐
𝜎1 [𝜏 /𝑎] ⇒ e

′[t /𝑎]. Hence we correctly have Γ ⊢inst e e′ : 𝜎2 [𝜏 /𝑎] ⇒ (e e
′) [t /𝑎] ; 𝜋 {

𝜎 [𝜏 /𝑎] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎].
Rule Elab-IAll: We just notice that, since fv(𝜏) ⊆ dom(Γ), 𝜎 [𝜏 /𝑎] [𝜏 / a] = 𝜎 [𝜏 / a] [𝜏 /𝑎].
Rule Elab-IExistCore: The rule applies with Γ ⊢inst e : 𝜖 [⌊e[t /𝑎]⌋ / a] ⇒ open e[t /𝑎] ;

𝜋 { 𝜎 [𝜏 /𝑎] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎]. We conclude by noting that 𝜖 [⌊e[t /𝑎]⌋ / a] =

𝜖 [⌊e⌋ / a] [𝜏 /𝑎] and open e[t /𝑎] = (open e) [t /𝑎].
Rule Elab-IResult: Γ ⊢inst e : 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎] ; [] { [] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎] is true.

□

Lemma B.7 (Free variable substitution). Given 𝑎 ∉ dom (Γ):
(1) If Γ ⊢∀ e⇐ 𝜎 , then Γ ⊢∀ e⇐ 𝜎 [𝜏 /𝑎].
(2) If Γ ⊢ℎ h⇒ 𝜎 , then Γ ⊢ℎ h⇒ 𝜎 [𝜏 /𝑎].
(3) If Γ ⊢ e⇒ 𝜌 , then Γ ⊢ e⇒ 𝜌 [𝜏 /𝑎].
(4) If Γ ⊢ℎ h ⇒ 𝜎 and Γ ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r , then Γ ⊢inst h : 𝜎 [𝜏 /𝑎] ; 𝜋 { 𝜎 [𝜏 /𝑎] ;

𝜌r [𝜏 /𝑎].

Proof. By corollary of Lemma B.6 □

Lemma B.8 (Substitution). Suppose Γ1 ⊢ e1 ⇒ 𝜌1 ⇒ e1 and take 𝑎 = fv(𝜌1)\fv(Γ1).
(1) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢ e2 ⇒ 𝜌2, then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢ e2 [e1 / x] ⇒ 𝜌2 [Λ𝑎.e1 / x].
(2) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢∀ e2 ⇐ 𝜎 , then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢∀ e2 [e1 / x] ⇐ 𝜎 [Λ𝑎.e1 / x]
(3) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r , then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢inst h[e1 / x] : 𝜎 [Λ𝑎.e1 / x] ;

𝜋 [e1 / x] { 𝜎 [Λ𝑎.e1 / x] ; 𝜌r [Λ𝑎.e1 / x]
(4) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢ℎ h⇒ 𝜎 , then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢ℎ h[e1 / x] ⇒ 𝜎 [Λ𝑎.e1 / x]

Proof. (1,2,3,4) By induction on e2.

e2 = x: Then Γ1, x:∀𝑎.𝜌1, Γ2 ⊢ℎ x ⇒ 𝜌2 implies 𝜌2 = 𝜌1 [𝜏 /𝑎]. This means that 𝜌2 [Λ𝑎.e1 / x] =
𝜌1 [𝜏 /𝑎] [Λ𝑎.e1 / x]. Since x does not appear in 𝜌1 (it is not in Γ1, which is used to type e1

with 𝜌1), we have in fact 𝜌2 [Λ𝑎.e1 / x] = 𝜌1 [𝜏 [Λ𝑎.e1 / x] /𝑎]. Thus, since Γ1 ⊢ e1 ⇐ 𝜌1 and

𝑎 ∉ dom (Γ1), by Lemma B.7 we obtain Γ1 ⊢ e1 ⇐ 𝜌2 [Λ𝑎.e1 / x], and then we conclude by

weakening.

e2 = e :: 𝜎 : By inversion on rules App and rule H-Ann, we get Γ1, x:∀𝑎.𝜌1 ⊢∀ e ⇐ 𝜎 . By

induction hypothesis, Γ1 ⊢∀ e[e1 / x] ⇐ 𝜎 [Λ𝑎.e1 / x]. Then, since projections do not appear

in type arguments, 𝜎 [Λ𝑎.e1 / x] = 𝜎 and Γ1 ⊢ℎ e[e1 / x] :: 𝜎 ⇒ 𝜎 , and we conclude by

applying rule App.

e2 = 𝜆y.e: By inversion on rule iAbs and induction hypothesis, Γ1, y:𝜏 [Λ𝑎.e1 / x] ⊢ e[e1 / x] ⇒
𝜌 [Λ𝑎.e1 / x]. Hence Γ1 ⊢ 𝜆y.e[e1 / x] ⇒ (𝜏 → ∃𝑏.𝜌 ′) [Λ𝑎.e1 / x].

e2 = let y = e3 in e4 By the induction hypothesis.

e2 = h 𝜋 with non-empty 𝜋 : By the induction hypothesis.

□

Theorem B.9 (Let-inlining). If x is free in e2 then:

(1) (Γ ⊢ let x = e1 in e2 ⇒ 𝜌) implies (Γ ⊢ e2 [e1 / x] ⇒ 𝜌)
(2) (Γ ⊢∀ let x = e1 in e2 ⇐ 𝜎) implies (Γ ⊢∀ e2 [e1 / x] ⇐ 𝜎)
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Proof. (1) By inversion on the LetCore rule, we have
Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇒ 𝜌 ′

𝑎 = fv(𝜌1)\dom(Γ)
𝜌 = 𝜌 ′[Λ𝑎.e1 / x]

By Lemma B.8 we obtain Γ ⊢ e2 [e1 / x] ⇒ 𝜌 ′[Λ𝑎.e1 / x].
(2) Let 𝜎 = ∀𝑎.∃𝑏.𝜌 . By inversion on rule Gen, we have Γ, 𝑎 ⊢ let x = e1 in e2 ⇐ 𝜌 [𝜏 /𝑏]. By

inversion on rule LetCore, we obtain:
Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇐ 𝜌 ′

𝑎 = fv(𝜌1)\dom(Γ)
𝜌 = 𝜌 ′[Λ𝑎.e1 / x]

By Lemma B.8, we obtain Γ ⊢ e2 [e1 / x] ⇐ 𝜌 ′[Λ𝑎.e1 / x] i.e. Γ ⊢ e2 [e1 / x] ⇐ 𝜌 . We conclude

by rule Gen.

□

C DETAILS AND PROOFS ABOUT THE CORE LANGUAGE, FX

C.1 Typing rules

G ⊢ e : t (Core expression typing)

CE-Var

⊢ G ok x : t ∈ G

G ⊢ x : t

CE-Int

⊢ G ok

G ⊢ n : Int

CE-Abs

G, x : t1 ⊢ e : t2

x ∉ fv(t2)
G ⊢ 𝜆x:t1.e : t1 → t2

CE-App

G ⊢ e1 : t1 → t2

G ⊢ e2 : t1

G ⊢ e1 e2 : t2

CE-TAbs

G, a ⊢ e : t

G ⊢ Λa.e : ∀ a.t

CE-TApp

G ⊢ e : ∀ a.t1

G ⊢ t2 : type

G ⊢ e t2 : t1 [t2 / a]

CE-Pack

G ⊢ t : type
G ⊢ ∃ a.t2 : type
G ⊢ e : t2 [t / a]

G ⊢ pack t, e as∃ a.t2 : ∃ a.t2

CE-Open

G ⊢ e : ∃ a.t
G ⊢ open e : t[⌊e⌋ / a]

CE-Let

G ⊢ e1 : t1

G, x : t1 ⊢ e2 : t2

G ⊢ let x = e1 in e2 : t2 [e1 / x]

CE-Cast

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : t2

G ⊢ t : type (Core type well-formedness)

CT-Var

⊢ G ok a ∈ G

G ⊢ a : type

CT-Base

⊢ G ok G ⊢ ti : type

G ⊢ B t : type

CT-ForAll

G, a ⊢ t : type

G ⊢ ∀ a.t : type

CT-Exists

G, a ⊢ t : type

G ⊢ ∃ a.t : type

CT-Proj

⊢ G ok fv(e) ⊆ dom(G)
G ⊢ ⌊e⌋ : type
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G ⊢ 𝛾 : t1 ∼ t2 (Core coercion typing)

CG-Refl

G ⊢ t : type

G ⊢ ⟨t⟩ : t ∼ t

CG-Sym

G ⊢ 𝛾 : t1 ∼ t2

G ⊢ sym𝛾 : t2 ∼ t1

CG-Trans

G ⊢ 𝛾1 : t1 ∼ t2

G ⊢ 𝛾2 : t2 ∼ t3

G ⊢ 𝛾1 ;; 𝛾2 : t1 ∼ t3

CG-Base

⊢ G ok G ⊢ 𝛾 : t1 ∼ t2

G ⊢ B𝛾 : B t1 ∼ B t2

CG-ForAll

G, a ⊢ 𝛾 : t1 ∼ t2

G ⊢ ∀ a.𝛾 : (∀ a.t1) ∼ (∀ a.t2)

CG-Exists

G, a ⊢ 𝛾 : t1 ∼ t2

G ⊢ ∃ a.𝛾 : (∃ a.t1) ∼ (∃ a.t2)

CG-Proj

G ⊢ 𝜂 : e1 ∼ e2

G ⊢ ⌊𝜂⌋ : ⌊e1⌋ ∼ ⌊e2⌋

CG-ProjPack

G ⊢ pack t, e as t2 : t2

G ⊢ projpack t, e as t2 : ⌊pack t, e as t2⌋ ∼ t

CG-InstForAll

G ⊢ 𝛾1 : (∀ a.t1) ∼ (∀ a.t2)
G ⊢ 𝛾2 : t3 ∼ t4

G ⊢ 𝛾1
@𝛾2 : t1 [t3 / a] ∼ t2 [t4 / a]

CG-InstExists

G ⊢ 𝛾1 : (∃ a.t1) ∼ (∃ a.t2)
G ⊢ 𝛾2 : t3 ∼ t4

G ⊢ 𝛾1
@𝛾2 : t1 [t3 / a] ∼ t2 [t4 / a]

CG-Nth

G ⊢ 𝛾 : B t ∼ B t

′

G ⊢ nthn 𝛾 : tn ∼ t
′
n

G ⊢ 𝜂 : e1 ∼ e2 (Core expression coercion typing)

CH-Coherence

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : e ∼ (e ▷ 𝛾)

CH-Step

G ⊢ e : t

G ⊢ e
′

: t G ⊢ e −→ e
′

G ⊢ step e : e ∼ e
′

⊢ G ok (Core context well-formedness)

C-Nil

⊢ ∅ ok

C-Type

⊢ G ok a ∉ dom(G)
⊢ G, a ok

C-Term

G ⊢ t : type
x ∉ dom(G)
⊢ G, x : t ok

G ⊢ e −→ e
′

(Core operational semantics)

CS-Beta

G ⊢ (𝜆x:t.e1) e2 −→ e1 [e2 / x]

CS-AppCong

G ⊢ e1 −→ e
′
1

G ⊢ e1 e2 −→ e
′
1

e2

CS-AppPull

v = 𝜆x:t.e0

𝛾1 = sym (nth0 𝛾)
𝛾2 = nth1 𝛾

G ⊢ (v ▷ 𝛾) e −→ (v (e ▷ 𝛾1)) ▷ 𝛾2

CS-TAbsCong

G, a ⊢ e −→ e
′

G ⊢ Λa.e −→ Λa.e′

CS-TAbsPull

G ⊢ Λa.(v ▷ 𝛾) −→ (Λa.v) ▷ ∀ a.𝛾

CS-TBeta

G ⊢ (Λa.v) t −→ v[t / a]

CS-TAppCong

G ⊢ e −→ e
′

G ⊢ e t −→ e
′
t

CS-TAppPull

G ⊢ v : ∀ a.t0

G ⊢ (v ▷ 𝛾) t −→ v t ▷ (𝛾 @⟨t⟩)

CS-PackCong

G ⊢ e −→ e
′

G ⊢ pack t, e as t2 −→ pack t, e′ as t2
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CS-OpenPack

G ⊢ open (pack t, v as t2) −→ v ▷ ⟨t2⟩@(sym (projpack t, v as t2))

CS-OpenPackCasted

G ⊢ open (pack t, (v ▷ 𝛾) as t2) −→ (v ▷ 𝛾) ▷ ⟨t2⟩@(sym (projpack t, (v ▷ 𝛾) as t2))

CS-OpenCong

G ⊢ e : t G ⊢ e −→ e
′

G ⊢ open e −→ open e
′ ▷ ⟨t⟩@(sym ⌊step e⌋)

CS-OpenPull

v = pack t1, v0 as∃ a.t0

G ⊢ open (v ▷ 𝛾) −→ (open v) ▷ 𝛾 @⌊v ▷ 𝛾⌋

CS-Let

G ⊢ let x = e1 in e2 −→ e2 [e1 / x]

CS-CastCong

G ⊢ e −→ e
′

G ⊢ e ▷ 𝛾 −→ e
′ ▷ 𝛾

CS-CastTrans

G ⊢ (v ▷ 𝛾1) ▷ 𝛾2 −→ v ▷ (𝛾1 ;; 𝛾2)

C.2 Structural properties

Lemma C.1 (Context regularity).

(1) If G ⊢ e : t, then ⊢ G ok.
(2) If G ⊢ t : type, then ⊢ G ok.
(3) If G ⊢ 𝛾 : t1 ∼ t2, then ⊢ G ok.
(4) If G ⊢ 𝜂 : e1 ∼ e2, then ⊢ G ok.

Proof. By straightforward structural induction on the typing rule, inverting a rule in the context

judgment in the cases of context extension. □

Lemma C.2 (Context prefix). If ⊢ G,G′ ok, then ⊢ G ok.

Proof. Straightforward induction on the structure of G
′
. □

Lemma C.3 (Weakening in types). If G ⊢ t : type and ⊢ G,G′ ok, then G,G′ ⊢ t : type.

Proof. By straightforward induction on G ⊢ t : type. In the case for rule CT-Proj, we use the

transitivity of ⊆. □

Lemma C.4 (Permutation in types). Suppose G
′
is a permutation of G and ⊢ G

′ ok. If G ⊢ t : type,
then G

′ ⊢ t : type.

Proof. By straightforward induction on G ⊢ t : type. In the case for rule CT-Proj, we use the

fact that ⊆ ignores permutations. □

Lemma C.5 (Permutation in context prefixes). Suppose G
′
is a permutation of G. If ⊢ G,G′′ ok

and ⊢ G
′ ok, then ⊢ G

′,G′′ ok.

Proof. By induction on the structure of G
′′
, appealing to Lemma C.4. □

Lemma C.6 (Permutation in contexts (1)).

(1) If ⊢ G, x : t, a,G′ ok, then ⊢ G, a, x : t,G′ ok.
(2) If ⊢ G, a′, a,G′ ok, then ⊢ G, a, a′,G′ ok.
Proof.
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(1) By Lemma C.2, we know ⊢ G, x : t, a ok. Inversion tells us that G ⊢ t : type. We then use

rule C-Term to get ⊢ G, a, x : t ok. We are then done by Lemma C.5.

(2) By Lemma C.2, we know ⊢ G, a′, a ok. We are done by inversion, rule C-Type, and Lemma C.5

□

Lemma C.7 (Permutation in contexts). If ⊢ G1,G2, a,G3 ok, then ⊢ G1, a,G2,G3 ok.

Proof. By induction on the structure of G2, appealing to Lemma C.6. □

Lemma C.8 (Strengthening in contexts). If ⊢ G, x : t,G′ ok and G
′
contains only type variable

bindings. Then ⊢ G,G′ ok.

Proof. Straightforward induction on the structure of G
′
. □

Lemma C.9 (Strengthening in types). Suppose G, x : t
′,G′ ⊢ t : type, x ∉ fv(t), and G

′

contains only type variable bindings. Then G,G′ ⊢ t : type.

Proof. By induction on the structure of G, x : t
′,G′ ⊢ t : type.

Rule CT-Var: By appeal to Lemma C.8 and rule CT-Var.

Rule CT-Base: By the induction hypothesis and Lemma C.8.

Rule CT-ForAll: By the induction hypothesis.

Rule CT-Exists: By the induction hypothesis.

Rule CT-Proj: We use Lemma C.8 to show ⊢ G,G′ okWe know t = ⌊e⌋, and that we further

know that fv(e) ⊆ dom(G, x : t,G′). However, we also have assumed that x ∉ fv(e), and
thus fv(e) ⊆ dom(G,G′). We can finish with rule CT-Proj.

□

Lemma C.10 (Permutation in terms). Suppose G
′
is a permutation of G and ⊢ G

′ ok.
(1) If G ⊢ e : t, then G

′ ⊢ e : t.

(2) If G ⊢ 𝛾 : t1 ∼ t2, then G
′ ⊢ 𝛾 : t1 ∼ t2.

(3) If G ⊢ 𝜂 : e1 ∼ e2, then G
′ ⊢ 𝜂 : e1 ∼ e2.

(4) If G ⊢ e −→ e
′
, then G

′ ⊢ e −→ e
′
.

Proof. Straightforward mutual induction on the structure of the assumed typing judgment,

using Lemma C.4 in cases that refer to the well-formedness of types. □

Lemma C.11 (Weakening in terms). Suppose ⊢ G,G′ ok.
(1) If G ⊢ e : t, then G,G′ ⊢ e : t.

(2) If G ⊢ 𝛾 : t1 ∼ t2, then G,G′ ⊢ 𝛾 : t1 ∼ t2.

(3) If G ⊢ 𝜂 : e1 ∼ e2, then G,G′ ⊢ 𝜂 : e1 ∼ e2.

(4) If G ⊢ e −→ e
′
, then G,G′ ⊢ e −→ e

′
.

Proof. Straightforward mutual induction on the structure of the assumed judgment, allowing

variable renaming in rules CE-Abs, CE-TAbs, CE-Let, CG-ForAll, CG-Exists, and CS-TAbsCong

and using Lemma C.10 in those cases. Cases using the type well-formedness judgment additionally

need Lemma C.3. □

Lemma C.12 (Well-formed context types). If ⊢ G ok and x : t ∈ G then G ⊢ t : type.

Proof. By structural induction on the structure of ⊢ G ok.
Rule C-Nil: Not possible, by x : t ∈ G.

Rule C-Type: By the induction hypothesis and Lemma C.3.
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Rule C-Term: If we have found the binding for x, the result comes straight from Lemma C.3.

Otherwise, we use the induction hypothesis and Lemma C.3.

□
Lemma C.13 (Expression scoping).

(1) If G ⊢ e : t, then fv(e) ⊆ dom(G).
(2) If G ⊢ 𝛾 : t1 ∼ t2, then fv(𝛾) ⊆ dom(G).
(3) If G ⊢ 𝜂 : e1 ∼ e2, then fv(𝜂) ⊆ dom(G).

Proof. Straightforward mutual induction on G ⊢ e : t, G ⊢ 𝛾 : t1 ∼ t2, and G ⊢ 𝜂 : e1 ∼ e2. We

must use Lemma C.12 in the case for rule CE-Abs. □

C.3 Preservation

Lemma C.14 (Type substitution in types).

(1) If G1, a,G2 ⊢ t1 : type and G1 ⊢ t2 : type, then G1,G2 [t2 / a] ⊢ t1 [t2 / a] : type.
(2) If ⊢ G1, a,G2 ok and G1 ⊢ t2 : type, then ⊢ G1,G2 [t2 / a] ok.

Proof. By mutual induction on the structure of the typing judgments.

Rule CT-Var: Here, we know t1 = a
′
, and inversion tells us ⊢ G1, a,G2 ok. The induction

hypothesis tells us that ⊢ G1,G2 [t2 / a] ok. We now have three cases:

a
′ ∈ G1: Wemust proveG1,G2 [t2 / a] ⊢ a′ : type. This comes straight from ⊢ G1,G2 [t2 / a] ok
and a

′ ∈ G1, by rule CT-Var.

a
′ = a: We must prove G1,G2 [t2 / a] ⊢ t2 : type. We are done by Lemma C.3.

a
′ ∈ G2: Wemust proveG1,G2 [t2 / a] ⊢ a′ : type. This comes straight from ⊢ G1,G2 [t2 / a] ok,
and a

′ ∈ G2 [t2 / a], by rule CT-Var. (Note that substitutions do not affect type variable

bindings.)

Rule CT-Base: By the induction hypothesis.

Rule CT-ForAll: By the induction hypothesis.

Rule CT-Exists: In this case, t1 = ∃ a′.t0. Inversion tells us G1, a,G2, a
′ ⊢ t0 : type. We now

use the induction hypothesis to get G1,G2 [t2 / a], a′ ⊢ t0 [t2 / a] : type and finish with

rule CT-Exists to get G1,G2 [t2 / a] ⊢ ∃ a′.t0 [t2 / a] : type as desired.
Rule CT-Proj: We know t1 = ⌊e⌋, and inversion tells us that ⊢ G1, a,G2 ok and fv(e) ⊆

dom(G1, a,G2). We must prove G1,G2 [t2 / a] ⊢ ⌊e[t2 / a]⌋ : type. The induction hypothesis

tells us that ⊢ G1,G2 [t2 / a] ok, so (using ruleCT-Proj) wemust prove only that fv(e[t2 / a]) ⊆
dom(G1,G2 [t2 / a]). Thismust be true, because a cannot be free in e[t2 / a] and dom(G2 [t2 / a]) =
dom(G2).

Rule C-Nil: Impossible.

Rule C-Type: We have two cases, depending on whether G2 is empty. If G2 is empty, our result

is immediate. Otherwise, it comes from the induction hypothesis.

Rule C-Term: By the induction hypothesis.

□
Lemma C.15 (Type substitution).

(1) If G1, x : t2,G2 ⊢ t1 : type and G1 ⊢ e2 : t2, then G1,G2 [e2 / x] ⊢ t1 [e2 / x] : type.
(2) If ⊢ G1, x : t2,G2 ok and G1 ⊢ e2 : t2, then ⊢ G1,G2 [e2 / x] ok.

Proof. By mutual induction on the typing judgments.

Rule CT-Var: We know that t1 = a, and inversion of rule CT-Var gives us ⊢ G1, x : t2,G2 ok
and a ∈ G1, x : t2,G2. We must prove G1,G2 [e2 / x] ⊢ a : type. The induction hypothesis
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gives us that ⊢ G1,G2 [e2 / x] ok. And, noting that substitutions do not affect type variable

bindings, we must have a ∈ G1,G2 [e2 / x]. Thus we are done by rule CT-Var.

Rule CT-Base: By the induction hypothesis.

Rule CT-ForAll: By the induction hypothesis.

Rule CT-Exists: By the induction hypothesis.

Rule CT-Proj: We know that t1 = ⌊e⌋; we must prove G1,G2 [e2 / x] ⊢ ⌊e⌋ [e2 / x] : type.
We know How

⊢ G1, x : t2,G2 ok inversion of rule CT-Proj

fv(e) ⊆ dom(G1, x : t2,G2) inversion of rule CT-Proj

⊢ G1,G2 [e2 / x] ok induction hypothesis

fv(e[e2 / x]) ⊆ fv(e) ∪ fv(e2)\{x} def’n of substitution

fv(e[e2 / x]) ⊆ dom(G1,G2 [e2 / x]) rules of ⊆
G1,G2 [e2 / x] ⊢ ⌊e⌋ [e2 / x] : type rule CT-Proj

Rule C-Nil: Impossible, as the starting context is not empty (it has a binding for x).

Rule C-Type: By the induction hypothesis, noting that the substitution in contexts will not

affect a type variable binding. (Type variables a and term variables x are distinct.)

Rule C-Term: We have two cases: either G2 is empty or not. If it is empty, then we are done by

Lemma C.1. If it is not empty, then we know that the substitution does not affect the name of

the last variable in the context, and we are done by the (first) induction hypothesis.

□

Lemma C.16 (Substitution in values). If v is a value, then v[e / x] is also a value.

Proof. Straightforward induction on the definition of values. □

Lemma C.17 (Substitution). Suppose G1 ⊢ e2 : t2.

(1) If G1, x : t2,G2 ⊢ e1 : t1, then G1,G2 [e2 / x] ⊢ e1 [e2 / x] : t1 [e2 / x].
(2) If G1, x : t2,G2 ⊢ 𝛾 : t0 ∼ t1, then G1,G2 [e2 / x] ⊢ 𝛾 [e2 / x] : t0 [e2 / x] ∼ t1 [e2 / x].
(3) If G1, x : t2,G2 ⊢ 𝜂 : e0 ∼ e1, then G1,G2 [e2 / x] ⊢ 𝜂 [e2 / x] : e0 [e2 / x] ∼ e1 [e2 / x].
(4) If G1, x : t2,G2 ⊢ e1 −→ e

′
1
, then G1,G2 [e2 / x] ⊢ e1 [e2 / x] −→ e

′
1
[e2 / x].

Proof. By mutual induction on the structure of G1, x : t2,G2 ⊢ e1 : t1, G1, x : t2,G2 ⊢ 𝛾 : t0 ∼ t1,

and G1, x : t2,G2 ⊢ 𝜂 : e0 ∼ e1.

Rule CE-Var: Here, e1 = x
′
for some x

′
. We have three cases:

x
′

: t1 ∈ G1: By Lemma C.1, we know that x ∉ dom(G1). Thus, x ≠ x
′
. Thus, e1 [e2 / x] =

e1 = x
′
. We now must show that t1 does not mention x. This comes from the fact that t1

is well-formed within G1 (Lemma C.12) and thus that fv(t1) ⊆ dom(G1), excluding x. We

have now established that t1 [e2 / x] = t1. Our final goal is thus G1,G2 [e2 / x] ⊢ x ′ : t1; we

know x
′

: t1 ∈ G1. To use rule CE-Var, we must only show ⊢ G1,G2 [e2 / x] ok. This comes

straight from Lemma C.15, and we are done with this case.

x
′ = x: Using Lemma C.15 to get ⊢ G1,G2 [e2 / x] ok, we are done by Lemma C.11.

x
′

: t1 ∈ G2: We know x ≠ x
′
by the well-formedness of the context. We must show

G1,G2 [e2 / x] ⊢ x ′ : t1 [e2 / x]. Since x ′ : t1 ∈ G2, then it must be that x
′

: t1 [e2 / x] ∈
G2 [e2 / x]. We are thus done by rule CE-Var and Lemma C.15.

Rule CE-Int: Direct from Lemma C.15, noting that the substitutions in the subject and object

have no effect.

Rule CE-Abs: Here, e1 = 𝜆x ′:t3 .e3 for some x
′
, t3, and e3. We also have t1 = t3 → t4 for

some t4 such that G1, x : t1,G2, x
′

: t3 ⊢ e3 : t4. The induction hypothesis tells us that

G1,G2 [e2 / x], x ′ : t3 [e2 / x] ⊢ e3 [e2 / x] : t4 [e2 / x]. This is exactly what we need to use
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rule CE-Abs, and we are thus done (noting that it must be that fv(e2) does not include x ′, as
x
′
is locally bound).

Rule CE-App: By the induction hypothesis.

Rule CE-TAbs: By the induction hypothesis.

Rule CE-TApp: By the induction hypothesis and Lemma C.15.

Rule CE-Pack: Here, e1 = pack t, e as∃ a.t′, where t1 = ∃ a.t′. We must show G1,G2 [e2 / x] ⊢
pack t[e2 / x], e[e2 / x] as∃ a.t′[e2 / x] : ∃ a.t′[e2 / x]. Lemma C.15 gives us the first two

premises of rule CE-Pack. We must show G1,G2 [e2 / x] ⊢ e[e2 / x] : t
′[e2 / x] [t[e2 / x] / a].

By the algebra of substitutions, the object of this judgment equals t
′[t / a] [e2 / x]. By inversion

on our original assumption, we know G1, x : t2,G2 ⊢ e : t
′[t / a]. We are thus done by the

induction hypothesis.

Rule CE-Open: Here, e1 = open e, where G1, x : t2,G2 ⊢ e : ∃ a.t and t1 = t[⌊e⌋ / a]. We must

show G1,G2 [e2 / x] ⊢ open e[e2 / x] : t[⌊e⌋ / a] [e2 / x]. The object of this judgment equals

t[e2 / x] [⌊e⌋ [e2 / x] / a]. To use rule CE-Open, we must show G1,G2 [e2 / x] ⊢ e[e2 / x] :

∃ a.t[e2 / x]. This comes directly from the induction hypothesis, and so we are done with

this case.

Rule CE-Let: Similar to the case for rule CE-Abs.

Rule CE-Cast: By the induction hypothesis.

Rule CG-Refl: By Lemma C.15.

Rule CG-Sym: By the induction hypothesis.

Rule CG-Trans: By the induction hypothesis.

Rule CG-Base: By the induction hypothesis and Lemma C.15.

Rule CG-ForAll: By the induction hypothesis.

Rule CG-Exists: By the induction hypothesis.

Rule CG-Proj: By the induction hypothesis.

Rule CG-ProjPack: By the induction hypothesis.

Rule CG-InstForAll: By the induction hypothesis, noting that the substitutions commute, as

their domains are distinct.

Rule CG-InstExists: By the induction hypothesis, noting that the substitutions commute, as

their domains are distinct.

Rule CG-Nth: By the induction hypothesis.

Rule CH-Coherence: By the induction hypothesis.

Rule CH-Step: By the induction hypothesis.

Rule CS-Beta: Weknow e1 = (𝜆x0:t.e3) e4 and e
′
1
= e3 [e4 / x0].Wemust showG1,G2 [e2 / x] ⊢

(𝜆x0:t[e2 / x] .e3 [e2 / x]) e4 [e2 / x] −→ e3 [e4 / x0] [e2 / x]. RuleCS-Beta tells usG1,G2 [e2 / x] ⊢
(𝜆x0:t[e2 / x] .e3 [e2 / x]) e4 [e2 / x] −→ e3 [e2 / x] [e4 [e2 / x] / x0]. A little algebra on substitu-

tions (and the fact that x ≠ x0, renaming if necessary) shows that these judgments are the

same.

Rule CS-AppCong: By the induction hypothesis.

Rule CS-AppPull: By the induction hypothesis.

Rule CS-TAbsCong: By the induction hypothesis.

Rule CS-TAbsPull: By Lemma C.16.

Rule CS-TBeta: Similar to the case for rule CS-Beta, with an appeal to Lemma C.16.

Rule CS-TAppCong: By the induction hypothesis.

Rule CS-TAppPull: By the induction hypothesis and Lemma C.16.

Rule CS-PackCong: By the induction hypothesis.

Rule CS-OpenPack: By Lemma C.16.

Rule CS-OpenPackCasted: By Lemma C.16.
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Rule CS-OpenCong: By the induction hypothesis.

Rule CS-OpenPull: By the induction hypothesis, with an appeal to Lemma C.16.

Rule CS-Let: Similar to the case for rule CS-Beta.

Rule CS-CastCong: By the induction hypothesis.

Rule CS-CastTrans: By the induction hypothesis, with an appeal to Lemma C.16.

□

Lemma C.18 (Type substitution in terms). Suppose G1 ⊢ t2 : type.
(1) If G1, a,G2 ⊢ e1 : t1, then G1,G2 [t2 / a] ⊢ e1 [t2 / a] : t1 [t2 / a].
(2) If G1, a,G2 ⊢ 𝛾1 : t0 ∼ t1, then G1,G2 [t2 / a] ⊢ 𝛾1 [t2 / a] : t0 [t2 / a] ∼ t1 [t2 / a].
(3) If G1, a,G2 ⊢ 𝜂1 : e0 ∼ e1, then G1,G2 [t2 / a] ⊢ 𝜂1 [t2 / a] : e0 [t2 / a] ∼ e1 [t2 / a].
(4) If G1, a,G2 ⊢ e −→ e

′
, then G1,G2 [t2 / a] ⊢ e[t2 / a] −→ e

′[t2 / a].

Proof. By mutual induction on the structure of G1, a,G2 ⊢ e1 : t1, G1, a,G2 ⊢ 𝛾1 : t0 ∼ t1, and

G1, a,G2 ⊢ 𝜂1 : e0 ∼ e1.

Rule CE-Var: Here, e1 = x for some x. We have two cases:

x : t1 ∈ G1: Similar to the reasoning in this case in the proof of Lemma C.17, but invoking

Lemma C.14.

x : t1 ∈ G2: Similar to the reasoning in this case in the proof of Lemma C.17, but invoking

Lemma C.14.

Rule CE-Int: By Lemma C.14.

Rule CE-Abs: By the induction hypothesis.

Rule CE-App: By the induction hypothesis.

Rule CE-TAbs: By the induction hypothesis.

Rule CE-TApp: By the induction hypothesis and Lemma C.14.

Rule CE-Pack: Similar to this case in the proof of Lemma C.17, using Lemma C.14.

Rule CE-Open: Similar to this case in the proof of Lemma C.17.

Rule CE-Let: Similar to this case in the proof of Lemma C.17.

Rule CE-Cast: By the induction hypothesis.

Rule CG-Refl: By Lemma C.14.

Rule CG-Sym: By the induction hypothesis.

Rule CG-Trans: By the induction hypothesis.

Rule CG-Base: By the induction hypothesis and Lemma C.14.

Rule CG-ForAll: By the induction hypothesis.

Rule CG-Exists: By the induction hypothesis.

Rule CG-Proj: By the induction hypothesis.

Rule CG-ProjPack: By the induction hypothesis.

Rule CG-InstForAll: By the induction hypothesis, noting that the substitutions commute as

their domains are distinct (renaming the local bound variable, if necessary).

Rule CG-InstExists: By the induction hypothesis, noting that the substitutions commute as

their domains are distinct (renaming the local bound variable, if necessary).

Rule CG-Nth: By the induction hypothesis.

Rule CH-Coherence: By the induction hypothesis.

Rule CH-Step: By the induction hypothesis.

Cases for G1, a,G2 ⊢ e −→ e
′: Similar to these cases in the proof of Lemma C.17.

□
Lemma C.19 (Object regularity).

(1) If G ⊢ e : t, then G ⊢ t : type.
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(2) If G ⊢ 𝛾 : t1 ∼ t2, then G ⊢ t1 : type and G ⊢ t2 : type.
(3) If G ⊢ 𝜂 : e1 ∼ e2, then there exist t1 and t2 such that G ⊢ e1 : t1 and G ⊢ e2 : t2.

Proof. By mutual structural induction on the typing judgments. Note that we know ⊢ G ok by

Lemma C.1.

Rule CE-Var: By Lemma C.12.

Rule CE-Int: Trivial, by rule CT-Base.

Rule CE-Abs: Here, we know t = t1 → t2. We know ⊢ G, x : t1 ok by Lemma C.1. Thus, by

Lemma C.12, we have G ⊢ t1 : type. The induction hypothesis gives us G, x : t1 ⊢ t2 : type,
but we also know that x ∉ fv(t2). We can use Lemma C.9 to get G ⊢ t2 : type, and we are

done by rule CT-Base.

Rule CE-App: By the induction hypothesis, inverting rule CT-Base.

Rule CE-TAbs: By the induction hypothesis and rule CT-ForAll.

Rule CE-TApp: Here, we know e = e1 t2, where t = t1 [t2 / a] and G ⊢ e1 : ∀a.t1 and

G ⊢ t2 : type. We must show G ⊢ t1 [t2 / a] : type; we are thus done by Lemma C.14.

Rule CE-Pack: By inversion.

Rule CE-Open: We know e = open e0, and (by inversion) G ⊢ e0 : ∃ a.t0. We must prove

G ⊢ t0 [⌊e0⌋ / a] : type. The induction hypothesis tells us that G ⊢ ∃ a.t0 : type. Inversion
by rule CT-Exists then tells us G, a ⊢ t0 : type. To use Lemma C.14, we must now show

G ⊢ ⌊e0⌋ : type. To use rule CT-Proj, we must now show the following:

⊢ G ok: This is from Lemma C.1.

fv(e0) ⊆ dom(G): This is from Lemma C.13.

Rule CT-Proj gives us G ⊢ ⌊e0⌋ : type and then Lemma C.14 gives us G ⊢ t0 [⌊e0⌋ / a] : type
as desired.

Rule CE-Let: By the induction hypothesis and Lemma C.15.

Rule CE-Cast: By the induction hypothesis.

Rule CG-Refl: By inversion.

Rule CG-Sym: By the induction hypothesis.

Rule CG-Trans: By the induction hypothesis.

Rule CG-Base: By the induction hypothesis and rule CT-Base.

Rule CG-ForAll: By the induction hypothesis and rule CT-ForAll.

Rule CG-Exists: By the induction hypothesis and rule CT-Exists.

Rule CG-Proj: By the induction hypothesis, Lemma C.13, and rule CT-Proj.

Rule CG-ProjPack: Here, 𝛾 = projpack t3, e as t4, and we must show G ⊢ ⌊pack t3, e as t4⌋ :

type and G ⊢ t3 : type. Inversion on the typing judgment gives us G ⊢ pack t3, e as t4 : t4.

This can be so only by rule CE-Pack. We can thus invert again to get G ⊢ t3 : type. We use

Lemma C.13 and we are done by rule CT-Proj.

Rule CG-InstForAll: In this case, we know 𝛾 = 𝛾1
@𝛾2, with inversion giving us G ⊢

𝛾1 : (∀a.t3) ∼ (∀a.t4) and G ⊢ 𝛾2 : t5 ∼ t6. We must show G ⊢ t3 [t5 / a] : type and

G ⊢ t4 [t6 / a] : type. Let’s focus on the first of these.

We know How

G ⊢ ∀ a.t3 : type induction hypothesis

G, a ⊢ t3 : type inversion of rule CT-ForAll

G ⊢ t5 : type induction hypothesis

G, a ⊢ t3 [t5 / a] : type Lemma C.14

The derivation for G ⊢ t4 [t6 / a] : type is similar.
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Rule CG-InstExists: In this case, we know 𝛾 = 𝛾1
@𝛾2, with inversion giving us G ⊢

𝛾1 : (∃ a.t3) ∼ (∃ a.t4) and G ⊢ 𝛾2 : t5 ∼ t6. We must show G ⊢ t3 [t5 / a] : type and

G ⊢ t4 [t6 / a] : type. Let’s focus on the first of these.

We know How

G ⊢ ∃ a.t3 : type induction hypothesis

G, a ⊢ t3 : type inversion of rule CT-Exists

G ⊢ t5 : type induction hypothesis

G ⊢ t3 [t5 / a] : type Lemma C.14

The derivation for G ⊢ t4 [t6 / a] : type is similar.

Rule CG-Nth: By the induction hypothesis, followed by inverting rule CT-Base.

Rule CH-Coherence: By inversion, using rule CE-Cast.

Rule CH-Step: By inversion.

□

Theorem C.20 (Preservation). If G ⊢ e : t and G ⊢ e −→ e
′
, then G ⊢ e

′
: t.

Proof. By induction on the structure of G ⊢ e −→ e
′
.

Rule CS-Beta: We have e = (𝜆x:t1.e1) e2 and e
′ = e1 [e2 / x], and we know G ⊢ 𝜆x:t1.e1 :

t1 → t2 (with our original type t equalling t2) and G ⊢ e2 : t1. The former must be by

rule CE-Abs, and we can thus conclude G, x : t1 ⊢ e1 : t2 and x ∉ fv(t2). Lemma C.17 tells us

G ⊢ e1 [e2 / x] : t2 [e2 / x]. But since x ∉ fv(t2), this reduces to G ⊢ e1 [e2 / x] : t2, and we are

done with this case.

Rule CS-AppCong: By the induction hypothesis.

Rule CS-AppPull: In this case, we know e = (v ▷ 𝛾) e2, where v = 𝜆x:t0 .e0.

We know How

t = t2 inversion on rule CE-App

G ⊢ (v ▷ 𝛾) : t1 → t2 inversion on rule CE-App

G ⊢ e2 : t1 inversion on rule CE-App

G ⊢ v : t3 inversion on rule CE-Cast

t3 = t4 → t5 inversion on rule CE-Abs (using v =

𝜆x:t0 .e0)

G ⊢ 𝛾 : (t4 → t5) ∼ (t1 → t2) inversion on rule CE-Cast

G ⊢ nth0 𝛾 : t4 ∼ t1 rule CG-Nth

G ⊢ sym (nth0 𝛾) : t1 ∼ t4 rule CG-Sym

G ⊢ e2 ▷ sym (nth0 𝛾) : t4 rule CE-Cast

G ⊢ v (e2 ▷ sym (nth0 𝛾)) : t5 rule CE-App

G ⊢ nth1 𝛾 : t5 ∼ t2 rule CG-Nth

G ⊢ (v (e2 ▷ sym (nth0 𝛾))) ▷ nth1 𝛾 : t2 rule CE-Cast

Rule CS-TAbsCong: By the induction hypothesis.
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Rule CS-TAbsPull: In this case, we know e = Λa.(v▷𝛾). We must prove G ⊢ (Λa.v)▷∀ a.𝛾 : t.

We know How

G ⊢ Λa.(v ▷ 𝛾) : t assumption

G, a ⊢ v ▷ 𝛾 : t1 inversion of rule CE-TAbs

t = ∀ a.t1 inversion of rule CE-TAbs

G, a ⊢ v : t2 inversion of rule CE-Cast

G, a ⊢ 𝛾 : t2 ∼ t1 inversion of rule CE-Cast

G ⊢ ∀ a.𝛾 : (∀ a.t2) ∼ (∀ a.t1) rule CG-ForAll

G ⊢ Λa.v : ∀ a.t2 rule CE-TAbs

G ⊢ (Λa.v) ▷ ∀ a.𝛾 : ∀ a.t1 rule CE-Cast

Rule CS-TBeta: We have e = (Λa.v1) t2 and e
′ = v1 [t2 / a]. We know G ⊢ Λa.v1 : ∀a.t1

(where our original type t equals t1 [t2 / a]). Inversion on rule CE-TAbs gives us G, a ⊢ v1 : t1.

We can now use Lemma C.18 to get G ⊢ v1 [t2 / a] : t1 [t2 / a] as desired.
Rule CS-TAppCong: By the induction hypothesis.

Rule CS-TAppPull: We have e = (v ▷ 𝛾) t0 where G ⊢ v : ∀a.t2, and we must prove

G ⊢ v t0 ▷ (𝛾 @⟨t0⟩) : t.

We know How

G ⊢ (v ▷ 𝛾) t0 : t assumption

G ⊢ v ▷ 𝛾 : ∀ a.t1 inversion of rule CE-TApp

G ⊢ t0 : type inversion of rule CE-TApp

t = t1 [t0 / a] inversion of rule CE-TApp

G ⊢ 𝛾 : (∀ a.t2) ∼ (∀ a.t1) inversion of rule CE-Cast

G ⊢ ⟨t0⟩ : t0 ∼ t0 rule CG-Refl

G ⊢ 𝛾 @⟨t0⟩ : t2 [t0 / a] ∼ t1 [t0 / a] rule CG-InstForAll

G ⊢ v t0 : t2 [t0 / a] rule CE-TApp

G ⊢ v t0 ▷ (𝛾 @⟨t0⟩) : t1 [t0 / a] rule CE-Cast

Rule CS-PackCong: By the induction hypothesis.
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Rule CS-OpenPack: Here, we have e = open (pack t1, v0 as t0).
We know How

G ⊢ open (pack t1, v0 as t0) : t assumption

G ⊢ pack t1, v0 as t0 : ∃ a.t2 inversion

of

ruleCE-

Open

t = t2 [⌊pack t1, v0 as t0⌋ / a] inversion

of

ruleCE-

Open

G ⊢ v0 : t2 [t1 / a] inversion

of

ruleCE-

Pack

t0 = ∃ a.t2 inversion

of

ruleCE-

Pack

G ⊢ t0 : type inversion

of

ruleCE-

Pack

G ⊢ ⟨t0⟩ : (∃ a.t2) ∼ (∃ a.t2) ruleCG-

Refl

G ⊢ projpack t1, v0 as t0 : ⌊pack t1, v0 as t0⌋ ∼ t1 ruleCG-

ProjPack

G ⊢ sym (projpack t1, v0 as t0) : t1 ∼ ⌊pack t1, v0 as t0⌋ ruleCG-

Sym

G ⊢ ⟨t0⟩@(sym (projpack t1, v0 as t0)) : t2 [t1 / a] ∼ t2 [⌊pack t1, v0 as t0⌋ / a] ruleCG-

InstExists

G ⊢ v0 ▷ ⟨t0⟩@(sym (projpack t1, v0 as t0)) : t2 [⌊pack t1, v0 as t0⌋ / a] ruleCE-

Cast

We thus see that the reduct has the same type as the redex, and we are done with this case.

Rule CS-OpenPackCasted: Similar to the previous case; note that we need ruleCS-OpenPackCasted

distinct from rule CS-OpenPack only to support determinism of reduction; otherwise both

could be subsumed by a version of the rule that packed an expression e instead of a value.

Rule CS-OpenCong: We must have e = open e0. Inverting rule CE-Open in the derivation for

G ⊢ open e0 : t tells us G ⊢ e0 : ∃ a.t2 and t = t2 [⌊e0⌋ / a]. Given G ⊢ e0 −→ e
′
0
, we must now

show G ⊢ open e
′
0
▷ ⟨∃ a.t2⟩@(sym ⌊step e⌋) : t2 [⌊e0⌋ / a].
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We know How

G ⊢ e
′
0

: ∃ a.t2 induction hypothesis

G ⊢ step e0 : e0 ∼ e
′
0

rule CH-Step

G ⊢ ⌊step e0⌋ : ⌊e0⌋ ∼ ⌊e′0⌋ rule CG-Proj

G ⊢ sym ⌊step e0⌋ : ⌊e′
0
⌋ ∼ ⌊e0⌋ rule CG-Sym

G ⊢ ∃ a.t2 : type Lemma C.19

G ⊢ ⟨∃ a.t2⟩ : (∃ a.t2) ∼ (∃ a.t2) rule CG-Refl

G ⊢ ⟨∃ a.t2⟩@(sym ⌊step e0⌋) : t2 [⌊e′0⌋ / a] ∼ t2 [⌊e0⌋ / a] rule CG-InstExists

G ⊢ open e
′
0

: t2 [⌊e′0⌋ / a] rule CE-Open

G ⊢ open e
′
0
▷ ⟨∃ a.t2⟩@(sym ⌊step e0⌋) : t2 [⌊e0⌋ / a] rule CE-Cast

We are done with this case.

Rule CS-OpenPull: We have e = open (v ▷ 𝛾), where v = pack t0, v0 as∃ a.t1.

We know How

G ⊢ open (v ▷ 𝛾) : t assumption

G ⊢ v ▷ 𝛾 : ∃ a.t2 inversion of rule CE-Open

t = t2 [⌊v ▷ 𝛾⌋ / a] inversion of rule CE-Open

G ⊢ v : t3 inversion of rule CE-Cast

t3 = ∃ a.t1 inversion of rule CE-Pack

G ⊢ 𝛾 : (∃ a.t1) ∼ (∃ a.t2) inversion of rule CE-Cast

G ⊢ v ▷ 𝛾 : v ∼ v ▷ 𝛾 use of rule CH-Coherence

G ⊢ ⌊v ▷ 𝛾⌋ : ⌊v⌋ ∼ ⌊v ▷ 𝛾⌋ rule CG-Proj

G ⊢ 𝛾 @⌊v ▷ 𝛾⌋ : t1 [⌊v⌋ / a] ∼ t2 [⌊v ▷ 𝛾⌋ / a] rule CG-InstExists

G ⊢ open v : t1 [⌊v⌋ / a] rule CE-Open

G ⊢ open v ▷ 𝛾 @⌊v ▷ 𝛾⌋ : t2 [⌊v ▷ 𝛾⌋ / a] rule CE-Cast

Rule CS-Let: We have e = let x = e1 in e2.

We know How

G ⊢ let x = e1 in e2 : t assumption

G ⊢ e1 : t1 inversion of rule CE-Let

G, x : t1 ⊢ e2 : t2 inversion of rule CE-Let

t = t2 [e1 / x] inversion of rule CE-Let

G ⊢ e2 [e1 / x] : t2 [e1 / x] Lemma C.17

Rule CS-CastCong: We have e = e0 ▷ 𝛾 , where G ⊢ e0 −→ e
′
0
. We must show G ⊢ e

′
0
▷ 𝛾 : t.

We know How

G ⊢ e0 : t0 inversion of rule CE-Cast

G ⊢ 𝛾 : t0 ∼ t inversion of rule CE-Cast

G ⊢ e
′
0

: t0 induction hypothesis

G ⊢ e
′
0
▷ 𝛾 : t rule CE-Cast

Rule CS-CastTrans: We have e = (v ▷ 𝛾1) ▷ 𝛾2, and we must prove G ⊢ v ▷ (𝛾1 ;; 𝛾2) : t.

We know How

G ⊢ v ▷ 𝛾1 : t1 inversion of rule CE-Cast

G ⊢ 𝛾2 : t1 ∼ t inversion of rule CE-Cast

G ⊢ v : t2 inversion of rule CE-Cast (again)

G ⊢ 𝛾1 : t2 ∼ t1 inversion of rule CE-Cast

G ⊢ 𝛾1 ;; 𝛾2 : t2 ∼ t rule CG-Trans

G ⊢ v ▷ (𝛾1 ;; 𝛾2) : t rule CE-Cast

□
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C.4 Progress

Definition C.21 (Rewrite relation). Define rewrite relations on types t1 ⇒ t2 and terms e1 ⇒ e2

with the rules below.

t1 ⇒ t2 (Rewrite relation on types)

RT-Refl

t⇒ t

RT-Base

ti ⇒ t
′
i

B t⇒ B t

′

RT-ForAll

t⇒ t
′

∀ a.t⇒ ∀ a.t′

RT-Exists

t⇒ t
′

∃ a.t⇒ ∃ a.t′

RT-Proj

e⇒ e
′

⌊e⌋ ⇒ ⌊e′⌋

RT-ProjPack

t⇒ t
′

⌊pack t, e as∃ a.t0⌋ ⇒ t
′

e1 ⇒ e2 (Rewrite relation on terms)

RE-Refl

e⇒ e

RE-DropCo

e⇒ e
′

e ▷ 𝛾 ⇒ e
′

RE-AddCo

e⇒ e
′

e⇒ e
′ ▷ 𝛾

RE-Abs

t⇒ t
′

e⇒ e
′

𝜆x:t.e⇒ 𝜆x:t
′.e′

RE-App

e1 ⇒ e
′
1

e2 ⇒ e
′
2

e1 e2 ⇒ e
′
1

e
′
2

RE-TAbs

e⇒ e
′

Λa.e⇒ Λa.e′

RE-TApp

e⇒ e
′

t⇒ t
′

e t⇒ e
′
t
′

RE-Pack

t⇒ t
′

e⇒ e
′

t2 ⇒ t
′
2

pack t, e as t2 ⇒ pack t
′, e′ as t

′
2

RE-Open

e⇒ e
′

open e⇒ open e
′

RE-LetCong

e1 ⇒ e
′
1

e2 ⇒ e
′
2

let x = e1 in e2 ⇒ let x = e
′
1
in e
′
2

RE-Cast

e⇒ e
′

e ▷ 𝛾 ⇒ e
′ ▷ 𝛾 ′

RE-Beta

e1 ⇒ e
′
1

e2 ⇒ e
′
2

(𝜆x:t.e1) e2 ⇒ e
′
1
[e′

2
/ x]

RE-TBeta

e⇒ e
′

t⇒ t
′

(Λa.e) t⇒ e
′[t′ / a]

RE-OpenPack

e⇒ e
′

open (pack t, e as t2) ⇒ e
′

RE-Let

e1 ⇒ e
′
1

e2 ⇒ e
′
2

let x = e1 in e2 ⇒ e
′
2
[e′

1
/ x]

Definition C.22. Define⇒∗ to be the reflexive, transitive closure of⇒.

Lemma C.23 (Type substitution in rewrite relation).

(1) If t1 ⇒ t2, then t1 [t3 / a] ⇒ t2 [t3 / a].
(2) If e1 ⇒ e2, then e1 [t3 / a] ⇒ e2 [t3 / a].

Proof. By mutual induction on the structure of t1 ⇒ t2 or e1 ⇒ e2. □

Lemma C.24 (Type substitution in transitive rewrite relation).

(1) If t1 ⇒∗ t2, then t1 [t3 / a] ⇒∗ t2 [t3 / a].
(2) If e1 ⇒∗ e2, then e1 [t3 / a] ⇒∗ e2 [t3 / a].

Proof. By induction on the length of the reduction. □

Lemma C.25 (Substitution in rewrite relation).

(1) If t1 ⇒ t2, then t1 [e3 / x] ⇒ t2 [e3 / x].
(2) If e1 ⇒ e2, then e1 [e3 / x] ⇒ e2 [e3 / x].

Proof. By mutual induction on the structure of t1 ⇒ t2 or e1 ⇒ e2. □
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Lemma C.26 (Substitution in the transitive rewrite relation).

(1) If t1 ⇒∗ t2, then t1 [e3 / x] ⇒∗ t2 [e3 / x].
(2) If e1 ⇒∗ e2, then e1 [e3 / x] ⇒∗ e2 [e3 / x].

Proof. By induction on the length of the reduction. □
Lemma C.27 (Lifting in rewrite relation). Assume t1 ⇒ t2.

(1) For every t3, t3 [t1 / a] ⇒ t3 [t2 / a].
(2) For every e3, e3 [t1 / a] ⇒ e3 [t2 / a].

Proof. By mutual induction on the structure of t3 and e3.

t3 = a
′: We have two cases:

a
′ = a: We are done by assumption.

a
′ ≠ a: We are done by rule RT-Refl.

t3 = B t: By the induction hypothesis and rule RT-Base.

t3 = ∀ a′.t4: By the induction hypothesis and rule RT-ForAll.

t3 = ∃ a′.t4: By the induction hypothesis and rule RT-Exists.

t3 = ⌊e⌋: By the induction hypothesis and rule RT-Proj.

e3 = x: By rule RE-Refl.

e3 = 𝜆x:t.e: By the induction hypothesis and rule RE-Abs.

e3 = e1 e2: By the induction hypothesis and rule RE-App.

e3 = Λa.e: By the induction hypothesis and rule RE-TAbs.

e3 = e t: By the induction hypothesis and rule RE-TApp.

e3 = pack t, e as t
′: By the induction hypothesis and rule RE-Pack.

e3 = open e: By the induction hypothesis and rule RE-Open.

e3 = let x = e1 in e2: By the induction hypothesis and rule RE-LetCong.

e3 = e ▷ 𝛾 : By the induction hypothesis and rule RE-Cast. Note that the resulting coercion

need not be related to the initial coercion.

□
Lemma C.28 (Lifting in transitive rewrite relation). Assume t1 ⇒∗ t2.

(1) For every t3, t3 [t1 / a] ⇒∗ t3 [t2 / a].
(2) For every e3, e3 [t1 / a] ⇒∗ e3 [t2 / a].

Proof. By induction on the length of the reduction. □

Lemma C.29 (Parallel substitution of a type). Assume t1 ⇒ t2.

(1) If t3 ⇒ t4, then t3 [t1 / a] ⇒ t4 [t2 / a].
(2) If e3 ⇒ e4, then e3 [t1 / a] ⇒ e4 [t2 / a].

Proof. By mutual induction on t3 ⇒ t4 or e3 ⇒ e4.

Rule RT-Refl: By Lemma C.27.

Rule RT-Base: By the induction hypothesis.

Rule RT-ForAll: By the induction hypothesis.

Rule RT-Exists: By the induction hypothesis.

Rule RT-Proj: By the induction hypothesis.

Rule RT-ProjPack: By the induction hypothesis.

Rule RE-Refl: By Lemma C.27.

Rule RE-DropCo: By the induction hypothesis.

Rule RE-AddCo: By the induction hypothesis.

Rule RE-Abs: By the induction hypothesis.
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Rule RE-App: By the induction hypothesis.

Rule RE-TAbs: By the induction hypothesis.

Rule RE-TApp: By the induction hypothesis.

Rule RE-Pack: By the induction hypothesis.

Rule RE-Open: By the induction hypothesis.

Rule RE-LetCong: By the induction hypothesis.

Rule RE-Cast: By the induction hypothesis.

Rule RE-Beta: By the induction hypothesis.

Rule RE-TBeta: By the induction hypothesis, noting that the bound variable in the rule can

be considered distinct from the variable being substituted.

Rule RE-OpenPack: By the induction hypothesis.

Rule RE-Let: By the induction hypothesis.

□

Lemma C.30 (Parallel substitution). Assume e1 ⇒ e2.

(1) If t3 ⇒ t4, then t3 [e1 / x] ⇒ t4 [e2 / x].
(2) If e3 ⇒ e4, then e3 [e1 / x] ⇒ e4 [e2 / x].

Proof. Similar to previous proof. □
Lemma C.31 (Local diamond).

(1) If t1 ⇒ t2 and t1 ⇒ t3, then there exists t4 such that t2 ⇒ t4 and t3 ⇒ t4.

(2) If e1 ⇒ e2 and e1 ⇒ e3, then there exists e4 such that e2 ⇒ e4 and e3 ⇒ e4.

Proof. By mutual induction on the derivation for t1 ⇒ t2 or e1 ⇒ e2. In all cases, if t1 ⇒ t3 or

e1 ⇒ e3 is by rule RT-Refl or rule RE-Refl, then we are done, with the common reduct being t2 or

e2. We thus ignore the possibility that t1 ⇒ t3 can be by rule RT-Refl or that e1 ⇒ e3 can be by

rule RE-Refl. Similarly, the use of rule RE-AddCo to rewrite e1 ⇒ e3 can be countered by a use of

rule RE-DropCo in e3 ⇒ e4, keeping the rest of the case untouched; we thus ignore the possibility

of rule RE-AddCo for e1 ⇒ e3.

Rule RT-Refl: In this case, t2 = t1 and t3 can be the common reduct.

Rule RT-Base: The rewrite t1 ⇒ t3 must also be by rule RT-Base. We are done by applying the

induction hypothesis.

Rule RT-ForAll: The rewrite t1 ⇒ t3 must also be by rule RT-ForAll. We are done by applying

the induction hypothesis.

Rule RT-Exists: The rewrite t1 ⇒ t3 must also be by rule RT-Exists. We are done by applying

the induction hypothesis.

Rule RT-Proj: We have two cases, depending on how t1 ⇒ t3 was rewritten:

Rule RT-Proj: By the induction hypothesis.

Rule RT-ProjPack: Wehave t1 = ⌊pack t, e as∃ a.t0⌋ and t2 = ⌊e′
0
⌋, where pack t, e as∃ a.t0 ⇒

e
′
0
. We further have t3 = t

′
where t⇒ t

′
.

We know How

e
′
0
= pack t

′′, e′′ as∃ a.t′′
0

inversion of rule RE-Pack

t⇒ t
′′

inversion of rule RE-Pack

t
′′′

such that t
′⇒ t

′′′
and t

′′⇒ t
′′′

induction hypothesis

choose t4 = t
′′′

t2 ⇒ t
′′′

rule RT-ProjPack

Rule RT-ProjPack: We have two cases, depending on how t1 ⇒ t3 was rewritten:

Rule RT-Proj: Like the rule RT-Proj/rule RT-ProjPack case above.
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Rule RT-ProjPack: We are done by the induction hypothesis.

Rule RE-Refl: In this case, e2 = e1 and e3 can be the common reduct.

Rule RE-DropCo: We have two cases, depending on how e1 ⇒ e3 was rewritten:

Rule RE-DropCo: By the induction hypothesis.

Rule RE-Cast: In this case, e1 = e▷𝛾 , e⇒ e2, and e3 = e
′▷𝛾 ′ where e⇒ e

′
. The induction

hypothesis gives us e0 such that e2 ⇒ e0 and e
′⇒ e0. Choose e4 = e0. We see that e2 ⇒ e4

(from the induction hypothesis) and e3 ⇒ e4 by rule RE-Coherence.

Rule RE-AddCo: In this case, e2 = e
′ ▷ 𝛾 where e1 ⇒ e

′
. Use the induction hypothesis to

get e5 such that e
′ ⇒ e5 and e3 ⇒ e5. Choose e4 = e5. We conclude that e2 ⇒ e4 by

rule RE-DropCo.

Rule RE-Abs: By the induction hypothesis.

Rule RE-App: We have two cases, depending on how e1 ⇒ e3 was rewritten:

Rule RE-App: By the induction hypothesis.

Rule RE-Beta: We have e1 = (𝜆x:t1.e5) e6, e2 = (𝜆x:t2.e7) e8 (where t1 ⇒ t2, e5 ⇒ e7, and

e6 ⇒ e8 (inverting rule RE-Abs)), and e3 = e9 [e10 / x] (where e5 ⇒ e9 and e6 ⇒ e10).

We know How

e11 such that e7 ⇒ e11 and e9 ⇒ e11 induction hypothesis

e12 such that e8 ⇒ e12 and e10 ⇒ e12 induction hypothesis

Choose e4 = e11 [e12 / x]
e2 ⇒ e4 rule RE-Beta

e3 ⇒ e4 Lemma C.30

Rule RE-TAbs: By the induction hypothesis.

Rule RE-TApp: Similar to the rule RE-App case, but referring to rule RE-TBeta and Lemma

C.29.

Rule RE-Pack: By the induction hypothesis.

Rule RE-Open: Similar to the rule RE-DropCo case, but referring to rule RE-OpenPack.

Rule LetCong: Similar to the rule RE-App case, but referring to rule RE-Let. This case uses

Lemma C.30.

Rule Cast: By the induction hypothesis or following the logic in the case for rules RE-DropCo

and RE-Cast.

Rule Beta: We have two cases, depending on how e1 ⇒ e3 was rewritten.

Rule RE-App: See the case above about rules RE-App and RE-Beta.

Rule RE-Beta: We have e1 = (𝜆x:t1.e5) e6, e2 = e7 [e8 / x] (where e5 ⇒ e7 and e6 ⇒ e8),

and e3 = e9 [e10 / x] (where e5 ⇒ e9 and e6 ⇒ e10).

We know How

e11 such that e7 ⇒ e11 and e9 ⇒ e11 induction hypothesis

e12 such that e8 ⇒ e12 and e10 ⇒ e12 induction hypothesis

Choose e4 = e11 [e12 / x].
e2 ⇒ e4 Lemma C.30

e3 ⇒ e4 Lemma C.30

Rule RE-TBeta: Like the case for rule RE-Beta, but referring to rule RE-TApp and Lemma

C.29.

Rule RE-OpenPack: By the induction hypothesis or following the logic in the case for rules RE-

Open and RE-OpenPack.

Rule RE-Let: Like the case for rule RE-Beta, but referring to rule RE-LetCong. This case uses
Lemma C.30.

□
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Lemma C.32 (Confluence). If t1 ⇒∗ t2 and t1 ⇒∗ t3, then there exists t4 such that t2 ⇒∗ t4 and

t3 ⇒∗ t4.

Proof. Corollary of Lemma C.31. (See e.g. Baader and Nipkow [1998, Lemma 2.7.4].) □

Lemma C.33 (Rewriting existentials). If ∃ a.t1 ⇒∗ t3 and ∃ a.t2 ⇒∗ t3, then there exists t4

such that t1 ⇒∗ t4 and t2 ⇒∗ t4.

Proof. Ignoring reflexivity, the only rule that applies to ∃ a.t1 and ∃ a.t2 is rule RT-Exists.

Accordingly, an inductive argument shows that t3 must have the form∃ a.t4 for some t4. Furthermore,

the argument that reveals t4 also shows that t1 ⇒∗ t4 and t2 ⇒∗ t4 as desired. □

Lemma C.34 (Rewriting existentials). If ∀ a.t1 ⇒∗ t3 and ∀ a.t2 ⇒∗ t3, then there exists t4 such

that t1 ⇒∗ t4 and t2 ⇒∗ t4.

Proof. Similar to proof of Lemma C.33. □

Lemma C.35 (Rewriting base types). If B t⇒∗ t0 and B t

′⇒∗ t0, then, for each 𝑖 , there exists t
′′
i

such that ti ⇒∗ t
′′
i
and t

′
i
⇒ t

′′
i
.

Proof. Similar to proof of Lemma C.33. □

Lemma C.36 (Rewriting subsumes reduction). If G ⊢ e1 −→ e2, then e1 ⇒ e2.

Proof. By induction on the structure of G ⊢ e1 −→ e2. (We leave out uses of rule RE-Refl

throughout.)

Rule CS-Beta: By rule RE-Beta.

Rule CS-AppCong: By the induction hypothesis and rule RE-App.

Rule CS-AppPull: By rules RE-AddCo, RE-App, RE-DropCo, and RE-AddCo.

Rule CS-TAbsCong: By the induction hypothesis and rule RE-TAbs.

Rule CS-TAbsPull: By rules RE-AddCo, RE-TAbs, and RE-DropCo.

Rule CS-TBeta: By rule RE-TBeta.

Rule CS-TAppCong: By the induction hypothesis and rule RE-TApp.

Rule CS-TAppPull: By rules RE-AddCo, RE-TApp, and RE-DropCo.

Rule CS-PackCong: By the induction hypothesis and rule RE-Pack.

Rule CS-OpenPack: By rules RE-OpenPack and RE-AddCo.

Rule CS-OpenPackCasted: By rules RE-OpenPack and RE-AddCo.

Rule CS-OpenCong: By the induction hypothesis and rule RE-Open.

Rule CS-OpenPull: By rules RE-AddCo, RE-Open, and RE-DropCo.

Rule CS-Let: By rule RE-Let.

Rule CS-CastCong: By the induction hypothesis and rule RE-Cast.

Rule CS-CastTrans: by rules RE-Cast and RE-DropCo.

□

Lemma C.37 (Completeness of the rewrite relation). If G ⊢ 𝛾 : t1 ∼ t2, then there exists t3

such that t1 ⇒∗ t3 and t2 ⇒∗ t3.

Proof. By induction on the structure of the typing judgment.

Rule CG-Refl: Trivial.
Rule CG-Sym: By the induction hypothesis.
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Rule CG-Trans: We have 𝛾 = 𝛾1 ;; 𝛾2.

We know How

G ⊢ 𝛾1 : t1 ∼ t4 inversion of rule CG-Trans

G ⊢ 𝛾2 : t4 ∼ t2 inversion of rule CG-Trans

t5 such that t1 ⇒∗ t5 and t4 ⇒∗ t5 induction hypothesis

t6 such that t4 ⇒∗ t6 and t2 ⇒∗ t6 induction hypothesis

t7 such that t5 ⇒∗ t7 and t6 ⇒∗ t7 Lemma C.32

We are done, as t1 ⇒∗ t7 and t2 ⇒∗ t7.

Rule CG-Base: By the induction hypothesis and rule RT-Base.

Rule CG-ForAll: By the induction hypothesis and rule RT-ForAll.

Rule CG-Exists: By the induction hypothesis and rule RT-Exists.

Rule CG-Proj: We have 𝛾 = ⌊𝜂⌋, where G ⊢ 𝜂 : e1 ∼ e2. We must show that ⌊e1⌋ and ⌊e2⌋ are
joinable. We have two cases, depending on the rule used to prove G ⊢ 𝜂 : e1 ∼ e2:

Rule CH-Coherence: In this case, e2 = e1 ▷ 𝛾
′
. The common reduct is ⌊e1⌋, and we are

done by rule RE-DropCo.

Rule CH-Step: In this case, G ⊢ e1 −→ e2. Lemma C.36 tells us e1 ⇒ e2; we are done by

rule RE-Proj.

Rule CG-ProjPack: We are done by rule RT-ProjPack and rule RT-Refl.

Rule CG-InstForAll: Similar to the case below, but using Lemma C.34.

Rule CG-InstExists: We have 𝛾 = 𝛾1
@𝛾2.

We know How

G ⊢ 𝛾1 : (∃ a.t4) ∼ (∃ a.t5) inversion of rule CG-InstExists

G ⊢ 𝛾2 : t6 ∼ t7 inversion of rule CG-InstExists

t8 that is the join of ∃ a.t4 and ∃ a.t5 induction hypothesis

t9 that is the join of t6 and t7 induction hypothesis

t10 that is the join of t4 and t5 Lemma C.33

t4 [t6 / a] ⇒∗ t10 [t6 / a] Lemma C.24

t5 [t7 / a] ⇒∗ t10 [t7 / a] Lemma C.24

t10 [t6 / a] ⇒∗ t10 [t9 / a] Lemma C.28

t10 [t7 / a] ⇒∗ t10 [t9 / a] Lemma C.28

t10 [t9 / a] is the join of t4 [t6 / a] and t5 [t7 / a] transitivity

Rule CG-Nth: By the induction hypothesis and Lemma C.35.

□

Definition C.38 (Value type). If t is a value type, then t is one of the following:

(1) a base type B t

′

(2) a universal type ∀ a.t′
(3) an existential type ∃ a.t′

Definition C.39 (Type head). If t is a value type, then define head(t) by the following equations:

head(B t) = B

head(∀ a.t) = ∀
head(∃ a.t) = ∃

Lemma C.40 (Value types). If G ⊢ v : t, then t is a value type.

Proof. Straightforward case analysis on the structure of v. □
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Lemma C.41 (Preservation of value types). If t is a value type and t⇒∗ t
′
, then t

′
is a value

type and head(t) = head(t′).

Proof. By induction over the length of the chain t⇒∗ t
′
.

Zero steps: Trivial.
𝑛 + 1 steps: We have t0 such that t⇒∗ t0 in 𝑛 steps and that t0 ⇒ t

′
. The induction hypothesis

tells us that t0 is a value type and that head(t) = head(t0). Analyzing how t0 rewrites to t
′
,

we see it must be by rule RT-Base, rule RT-ForAll, or rule RT-Exists. In any of these cases

t
′
is a value type such that head(t0) = head(t′).

□

Lemma C.42 (Consistency). If G ⊢ 𝛾 : t1 ∼ t2 and both t1 and t2 are value types, then head(t1) =
head(t2).

Proof. Lemma C.37 gives us t3 such that t1 ⇒∗ t3 and t2 ⇒∗ t3. Lemma C.41 then tells

us that t3 is a value type with head(t3) = head(t1). Another use of Lemma C.41 tells us that

head(t3) = head(t2). By transitivity of equality, head(t1) = head(t2). □
Lemma C.43 (Canonical forms).

(1) If G ⊢ v : t1 → t2, then there exist x and e such that v = 𝜆x:t1.e.

(2) If G ⊢ v : ∀ a.t, then there exists v0 such that v = Λa.v0.

(3) If G ⊢ v : ∃ a.t, then either:

(a) there exists t0, v0, and t1 such that v = pack t0, v0 as t1, or

(b) there exists t0, v0, 𝛾0, and t1 such that v = pack t0, (v0 ▷ 𝛾0) as t1

Proof.

(1) Straightforward case analysis on the structure of v.

□

Theorem C.44 (Progress). If G ⊢ e : t, where G contains only type variable bindings, then one of

the following is true:

(1) there exists e
′
such that G ⊢ e −→ e

′
;

(2) e is a value v; or

(3) e is a casted value v ▷ 𝛾 .

Proof. By induction on the structure of the typing judgment.

Rule CE-Var: Impossible, as G contains only type variable bindings.

Rule CE-Int: Here, e = n, a value.

Rule CE-Abs: Here, e = 𝜆x:t1.e1, a value.

Rule CE-App: We know e = e1 e2, with G ⊢ e1 : t1 → t2 and G ⊢ e2 : t1. Applying the induction

hypothesis on the first of these yields three possibilities:

There exists e
′
1
such that G ⊢ e1 −→ e

′
1
: In this case, e1 e2 steps by rule CS-AppCong.

e1 = v1: Lemma C.43 tells us that v1 = 𝜆x:t1 .e0. Thus, our original expression is e =

(𝜆x:t1 .e0) e2, which can reduce by rule CS-Beta.

e1 = v1 ▷ 𝛾1: Thus, our original expression is e = (v1 ▷ 𝛾1) e2. In order to use rule CS-

AppPull, we need only prove v1 = 𝜆x:t3 .e0 for some t3 and e0.
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We know How

G ⊢ (v1 ▷ 𝛾1) e2 : t assumption

G ⊢ v1 ▷ 𝛾1 : t4 → t inversion of rule CE-App

G ⊢ v1 : t5 inversion of rule CE-Cast

G ⊢ 𝛾1 : t5 ∼ (t4 → t) inversion of rule CE-Cast

t5 is a value type Lemma C.40

t5 = t6 → t7 Lemma C.42

v1 = 𝜆x:t3.e0 Lemma C.43

We can thus use rule CS-AppPull, and we are done with this case.

Rule CE-TAbs: Here, e = Λa.e0, where G, a ⊢ e0 : t0 and t = ∀a.t0. Using the induction

hypothesis on e0 gives us three possibilities:

There exists e
′
0
such that G, a ⊢ e0 −→ e

′
0
: We are done by rule CS-TAbsCong.

e0 = v0: The expression e = Λa.v0 is a value.

e0 = v0 ▷ 𝛾0: We are done by rule CS-TAbsPull.

Rule CE-TApp: We know e = e0 t0, with G ⊢ e0 : ∀a.t1 and G ⊢ t0 : type. A use of the

induction hypothesis on e0 yields three cases:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-TAppCong.

e0 = v0: We have e = v0 t0. Lemma C.43 tells us that v0 = Λa.v1, and thus that e =

(Λa.v1) t0. We are done by rule CS-TBeta.

e0 = v0 ▷ 𝛾0: We have e = (v0 ▷ 𝛾0) t0. To use rule CS-TAppPull, we must show G ⊢ v0 :

∀ a.t1.

We know How

G ⊢ (v0 ▷ 𝛾0) t0 : t assumption

G ⊢ v0 ▷ 𝛾0 : ∀ a.t3 inversion of rule CE-TApp

G ⊢ v0 : t4 inversion of rule CE-Cast

G ⊢ 𝛾0 : t4 ∼ ∀ a.t3 inversion of rule CE-Cast

t4 is a value type Lemma C.40

t4 = ∀ a.t1 Lemma C.42

We can now use rule CS-TAppPull, and so we are done with this case.

Rule CE-Pack: We know e = pack t0, e0 as∃ a.t1, where G ⊢ e0 : t1 [t0 / a]. We use the induc-

tion hypothesis on e0 to get three cases:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-PackCong.

e0 = v0: Then e = pack t0, v0 as∃ a.t1 is a value.

e0 = v0 ▷ 𝛾0: In this case, we have e = pack t0, (v0 ▷ 𝛾0) as∃ a.t1, which is a value.

Rule CE-Open: We know e = open e0, where G ⊢ e0 : ∃ a.t0. Using the induction hypothesis

on e0 gives us three possibilities:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-OpenCong.

e0 = v0: LemmaC.43 gives us two cases, depending onwhether the packed value is casted. If it

is not, we are done by rule CS-OpenPack; if it is, we are done by rule CS-OpenPackCasted.

e0 = v0 ▷ 𝛾0: In this case, we have e = open (v0 ▷ 𝛾0). To use rule CS-OpenPull, we must

show only that v0 = pack t1, v1 as∃ a.t0.
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We know How

G ⊢ open (v0 ▷ 𝛾0) : t assumption

G ⊢ v0 ▷ 𝛾0 : ∃ a.t2 inversion of rule CE-Open

t = t2 [⌊v0 ▷ 𝛾0⌋ / a] inversion of rule CE-Open

G ⊢ v0 : t3 inversion of rule CE-Cast

G ⊢ 𝛾0 : t3 ∼ ∃ a.t2 inversion of rule CE-Cast

t3 is a value type Lemma C.40

t3 = ∃ a.t4 Lemma C.42

v0 = pack t1, v1 as∃ a.t0 Lemma C.43

We are thus done by rule CS-OpenPull.

Rule CE-Let: We are done by rule CS-Let.

Rule CE-Cast: We know e = e0 ▷ 𝛾0, where G ⊢ e0 : t0. We use the induction hypothesis on

e0 to get three cases:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-CastCong.

e0 = v0: Then e is a casted value v0 ▷ 𝛾0 and we are done.

e0 = v0 ▷ 𝛾1: We are done by rule CS-CastTrans.

□

C.5 Erasure

An erased expression 𝑒 is defined with the following grammar:

𝑒 ::= x | 𝜆x .𝑒 | 𝑒1 𝑒2 | let x = 𝑒1 in 𝑒2 | n
𝑣 ::= 𝜆x .𝑒 | n

Define the erasure function over core expressions with the following equations:

|x | = x

|𝜆x:t.e| = 𝜆x .|e|
|e1 e2 | = |e1 | |e2 |
|Λa.e| = |e|
|e t| = |e|

|pack t, e as t2 | = |e|
|open e| = |e|

|let x = e1 in e2 | = let x = |e1 | in |e2 |
|e ▷ 𝛾 | = |e|
|n| = n

The single-step operational semantics of erased expressions is given by these rules:

𝑒 −→ 𝑒 ′ (Single-step operational semantics)

ES-Beta

(𝜆x .𝑒1) 𝑒2 −→ 𝑒1 [𝑒2 / x]

ES-App

𝑒1 −→ 𝑒 ′
1

𝑒1 𝑒2 −→ 𝑒 ′
1
𝑒2

ES-Let

let x = 𝑒1 in 𝑒2 −→ 𝑒2 [𝑒1 / x]

Lemma C.45 (Erasure substitution). For all expressions e1 and e2, |e1 [e2 / x] | = |e1 | [ |e2 | / x].

Proof. Straightforward induction on the structure of e1. □
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Lemma C.46 (Erasure type substitution). For all expressions e and types t, |e[t / a] | = |e|.

Proof. Straightforward induction on the structure of e. □

Lemma C.47 (Single-step erasure (⇒)). If G ⊢ e −→ e
′
, then either |e| = |e′ | or |e| −→ |e′ |.

Proof. By induction on the structure of G ⊢ e −→ e
′
.

Rule CS-Beta: By rule ES-Beta and Lemma C.45.

Rule CS-AppCong: By the induction hypothesis and rule ES-App.

Rule CS-AppPull: Here, |e| = |e′ |.
Rule CS-TAbsCong: By the induction hypothesis.

Rule CS-TAbsPull: Here, |e| = |e′ |.
Rule CS-TBeta: By Lemma C.46.

Rule CS-TAppCong: By the induction hypothesis.

Rule CS-TAppPull: Here, |e| = |e′ |.
Rule CS-PackCong: By the induction hypothesis.

Rule CS-OpenPack: Here, |e| = |e′ |.
Rule CS-OpenPackCasted: Here, |e| = |e′ |.
Rule CS-OpenCong: By the induction hypothesis.

Rule CS-OpenPull: Here, |e| = |e′ |.
Rule CS-Let: By rule ES-Let and Lemma C.45.

Rule CS-CastCong: By the induction hypothesis.

Rule CS-CastTrans: Here, |e| = |e′ |.
□

Theorem C.48 (Erasure). If G ⊢ e −→∗ e
′
, then |e| −→∗ |e′ |.

Proof. By induction on the length of the reduction, appealing to Lemma C.47. □
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