
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

64

An Existential Crisis Resolved

Type inference for first-class existential types

RICHARD A. EISENBERG, Tweag, France
GUILLAUME DUBOC, ENS Lyon, France and Tweag, France

STEPHANIE WEIRICH, University of Pennsylvania, USA

DANIEL LEE, University of Pennsylvania, USA

Despite the great success of inferring and programming with universal types, their dual—existential types—are

much harder to work with. Existential types are useful in building abstract types, working with indexed types,

and providing first-class support for refinement types. This paper, set in the context of Haskell, presents a

bidirectional type-inference algorithm that infers where to introduce and eliminate existentials without any

annotations in terms, along with an explicitly typed, type-safe core language usable as a compilation target.

This approach is backward compatible. The key ingredient is to use strong existentials, which support (lazily)

projecting out the encapsulated data, not weak existentials accessible only by pattern-matching.

Additional Key Words and Phrases: existential types, type inference, Haskell

1 INTRODUCTION

Parametric polymorphism through the use of universally quantified type variables is pervasive in

functional programming. Given its overloaded numbers, a beginning Haskell programmer literally

cannot ask for the type of 1 + 1 without seeing a universally quantified type variable.

However, universal quantification has a dual: existentials. While universals claim the spotlight,

with support for automatic elimination (that is, instantiation) in all non-toy typed functional

languages we know and automatic introduction (frequently, let-generalization) in some, existentials

are underserved and impoverished. In every functional language we know, both elimination and

introduction must be done explicitly every time, and languages otherwise renowned for their type

inference—such as Haskell—require that users define a new top-level datatype for every existential.

While not as widely useful as universals, existential quantification comes up frequently in richly

typed programming. Further examples are in Section 2, but consider writing a dropWhile function
on everyone’s favorite example datatype, the length-indexed vector:

-- dropWhile predicate vec drops the longest prefix of vec such that all elements in the prefix

-- satisfy predicate. In this type, n is the vector’s length, while a is the type of elements.

dropWhile :: (a→ Bool) → Vec n a→ Vec ??? a

How can we fill in the question marks? Without knowing the contents of the vector and the

predicate we are passing, we cannot know the length of the output. Furthermore, returning an

ordinary, unindexed list would requiring copying a suffix of the input vector, an unacceptable

performance degradation.

Existentials come to our rescue: dropWhile :: (a→ Bool) → Vec n a→ ∃m. Vec m a. Though this
example can be written today in a number of languages, all require annotations in terms both to pack

(introduce) the existential and unpack (eliminate) it through the application or pattern-matching of

a data constructor.

This paper describes a type-inference algorithm that supports implicit introduction and elimina-

tion of existentials, with a concrete setting in Haskell. We offer the following contributions:

• Section 4 presents our type-inference algorithm, the primary contribution of this paper. The

algorithm is a small extension to an algorithm that accepts a Hindley-Milner language; our

2021. 2475-1421/2021/8-ART64

https://doi.org/10.1145/3473569

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.

HTTPS://ORCID.ORG/0000-0002-7669-9781
HTTPS://ORCID.ORG/0000-0002-6756-9168
https://doi.org/10.1145/3473569


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

64:2 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

language, X, is thus a superset of Hindley-Milner (Theorem 7.3). In addition, it supports

several stability properties [Bottu and Eisenberg 2021]; a language is stable if small, seemingly

innocuous changes to the input program (such as let-inlining) do not cause a change in the

type or acceptability of a program (Theorems 7.4–7.6). Our algorithm is easily integrable

with the latest inference algorithm [Serrano et al. 2020] in the Glasgow Haskell Compiler

(GHC) (Section 8).

• Section 5 presents a core language based on System F, FX, that is a suitable target of com-

pilation (Section 6) for X. We prove FX is type-safe (Theorems 5.1 and 5.2) and supports

type erasure (Theorem 5.3). It is designed in a way that is compatible with the existing

System FC [Sulzmann et al. 2007] language used internally within GHC. All programs ac-

cepted by our algorithm elaborate to well-typed programs in FX (Theorem 7.1). In addition,

elaboration preserves the semantics of the source program, as we can observe by examining

the result of type erasure (Theorem 7.2).

We normally desire type-inference algorithms to come with a declarative specification, where

automatic introduction and elimination of quantifiers can happen anywhere, in the style of the

Hindley-Milner type system [Hindley 1969; Milner 1978]. These specifications come alongside

syntax-directed algorithms that are sound and complete with respect to the specification [Clément

et al. 1986; Damas and Milner 1982]. However, we do not believe such a system is possible with

existentials; while negative results are hard to prove conclusively, we lay out our arguments against

this approach in Section 9.1. Instead, we present just our algorithm, though we avoid the complica-

tion and distraction of unification variables by allowing our algorithm to non-deterministically

guess monotypes 𝜏 in the style of a declarative specification.

There is a good deal of literature in this area; much of it is focused on module systems, which

often wish to hide the nature of a type using an existential package. We review some important

prior work in Section 10.

The concrete examples in this paper are set in Haskell, but the fundamental ideas in our inference

algorithm are fully portable to other settings, including in languages without let-generalization.

2 MOTIVATION AND EXAMPLES

Though not as prevalent as examples showing the benefits of universal polymorphism, easy

existential polymorphism smooths out some of the wrinkles currently inherent in programming

with indexed types such as GADTs [Xi et al. 2003].

2.1 Unknown Output Indices

We first return to the example from the introduction, writing an operation that drops an indetermi-

nate number of elements from a length-indexed vector:

data Nat = Zero | Succ Nat
type Vec :: Nat → Type→ Type -- -XStandaloneKindSignatures, new in GHC 8.10

data Vec n a where
Nil :: Vec Zero a
(:>) :: a→ Vec n a→ Vec (Succ n) a

infixr 5 :>

In today’s Haskell, the way to write dropWhile over vectors is like this:

type ExVec :: Type→ Type
data ExVec a where
MkEV :: ∀(n :: Nat) (a :: Type). Vec n a→ ExVec a

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

An Existential Crisis Resolved 64:3

filter :: (a→ Bool) → Vec n a→ ExVec a
filter Nil = MkEV Nil
filter p (x :> xs) | p x

, MkEV v ← filter p xs
= MkEV (x :> v)

| otherwise = filter p xs

filter :: (a→ Bool) → Vec n a→ ∃m. Vec m a
filter Nil = Nil
filter p (x :> xs) | p x = x :> filter p xs

| otherwise = filter p xs

(a) (b)

Fig. 1. Implementations of filter over vectors (a) in today’s Haskell, and (b) with our extensions

dropWhile :: (a→ Bool) → Vec n a→ ExVec a
dropWhile Nil = MkEV Nil
dropWhile p (x :> xs) | p x = dropWhile p xs

| otherwise = MkEV (x :> xs)

However, with our inference of existential introduction and elimination, we can simplify to this:

dropWhile :: (a→ Bool) → Vec n a→ ∃m. Vec m a
dropWhile Nil = Nil
dropWhile p (x :> xs) | p x = dropWhile p xs

| otherwise = x :> xs

There are two key differences: we no longer need to define the ExVec type, instead using ∃m. Vec m a;
and we can omit any notion of packing in the body of dropWhile. Similarly, clients of dropWhile
would not need to unpack the result, allowing the result of dropWhile to be immediately consumed

by a map, for example.

2.2 Increased Laziness

Another function that produces an output of indeterminate length is filter . It is enlightening to

compare the implementation of filter using today’s existentials and the version possible with our

new ideas; see Figure 1.

Beyond just the change to the types and the disappearance of terms to pack and unpack exis-

tentials, we can observe that the laziness of the function has changed. (See Aside 1 for why we

cannot easily make unpack bind lazily.) In Figure 1(a), we see that the recursive call to filter must be

made before the use of the cons operator :>. This means that, say, computing take 2 (filter p vec)
(assuming take is clever enough to expect an ExVec) requires computing the result of the entire

filter , even though the analogous expression on lists would only requiring filtering enough of vec
to get the first two elements that satisfy p. The implementation of filter also requires enough stack

space to store all the recursive calls, requiring an amount of space linear in the length of the input

vector.

By contrast, the implementation in Figure 1(b) is lazy in the tail of the vector. Computing

take 2 (filter p vec) really would only process enough elements of vec to find the first 2 that satisfy

p. In addition, the computation requires only constant stack space, because filter will immediately

return a cons cell storing a thunk for filtering the tail. If a bounded number of elements satisfy p,
this is an asymptotic improvement in space requirements.

We can support the behavior evident in Figure 1(b) only because we use strong existential

packages, where the existentially packed type can be projected out from the existential package,

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

64:4 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

What if unpack were simply lazy? The problem is that this is not simple! A straight-

forward typed operational semantics would not suffice, because there is no way to, say,

reduce an unpack into a substitution (the way we would handle a lazy let). We could

imagine an untyped operational semantics that did not require unpack to evaluate the

existential package, binding its variable with a lazy binding. Without types, though, we

would be unable to prove safety. In order to keep a typed operational semantics with a lazy

unpack, we must model a set of heap bindings and an evaluation stack in our semantics.

While this is possible, such an operational semantics is unsuitable for a (dependently

typed) language where we also might wish to evaluate in types, which is our eventual

goal for Haskell. The claim here is not that a lazy unpack is impossible, but that it is not

obviously superior to the approach we advocate for here.

Relatedly, one could wonder whether we should just use a lazy Haskell pattern in

filter . Alas, Haskell does not allow a lazy pattern to bind existential variables: writing

∼(MkEV v) ← filter p xs in Figure 1(a) would cause a compile-time error. This restriction

in today’s Haskell is not incidental, because the internal language would require exactly

the power of the open approach we propose here in order to support such a lazy pattern.

Aside 1. Why lazy unpack is no easy answer

instead of relying on the use of a pattern-match. Furthermore, projection of the packed type is

requires no evaluation of any expression. We return to explain more about this key innovation in

Section 3.

2.3 Object Encoding

Suppose we have a pretty-printer feature in our application, making use of the following class:

class Pretty a where
pretty :: a→ Doc

There are Pretty instances defined for all relevant types. Now, suppose we have order :: Order ,
client ::Client , and status::OrderStatus; we wish to create a message concatenating these three details.

Today, we might say vcat [pretty order, pretty client, pretty status ], where vcat :: [Doc ] → Doc.
However, equipped with lightweight existentials, we could instead write vcat [order, client, status ],
where vcat :: [∃a. Pretty a ∧ a] → Doc. Here, the ∧ type constructor allows us to pack a witness

for a constraint (such as a type class dictionary [Hall et al. 1996]) inside an existential package.

Each element of the list is checked against the type ∃a. Pretty a ∧ a. Choosing one, checking order
against ∃a. Pretty a ∧ a uses unification to determine that the choice of a should be Order , and we

will then need to satisfy a Pretty Order constraint. In the implementation of vcat , elements of type

∃a. Pretty a ∧ a will be available as arguments to pretty :

vcat :: [∃a. Pretty a ∧ a] → Doc
vcat [ ] = empty
vcat (x : xs) = pretty x $$ vcat xs

While the code simplification at call sites is modest, the ability to abstract over a constraint in

forming a list makes it easier to avoid the types from preventing users from expressing their

thoughts more directly.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

An Existential Crisis Resolved 64:5

Our main formal presentation in this paper does not include the packed constraints required

here, but Section 9.2 considers an extension to our work that would support this example.

2.4 Richly Typed Data Structures

Suppose we wish to design a datatype whose inhabitants meet certain invariants by construction. If

the invariants are complex enough, this can be done only by designing the datatype as a generalized

algebraic datatype (GADT) [Xi et al. 2003]. Though other examples in this space abound (for

example, encoding binary trees [McBride 2014] and regular expressions [Weirich 2018]), we will

use the idea of a well-typed expression language, perhaps familiar to our readers.
1

The idea is encapsulated in these definitions:

data Ty = Ty :→ Ty | . . . -- base types elided

type Exp :: [Ty ] -- types of in-scope variables

→ Ty -- type of expression

→ Type
data Exp ctx ty where
App :: Exp ctx (arg :→ result) → Exp ctx arg → Exp ctx result
. . .

An expression of type Exp ctx ty is guaranteed to be well-typed in our object language: note that a

function application requires the function to have a function type arg :→ result and the argument

to have type arg. (The ctx is a list of the types of in-scope variables; using de Bruijn indices means

we do not need to map names.) We are thus unable to represent the syntax tree applying, say, the

number 5 to an argument True.
However, if we are to use Exp in a running interpreter, we have a problem: users might not type

well-typed expressions. How can we take a user-written program and represent it in Exp? We must

type-check it.

Assuming a type UExp (“unchecked expression”) that is like Exp but without its indices, we

would write the following:
2

typecheck :: (ctx :: [Ty ]) → UExp→ Maybe (∃ty . Exp ctx ty)
typecheck ctx (UApp fun arg) = do -- using the Maybe monad

fun’ ← typecheck ctx fun
arg’ ← typecheck ctx arg

-- decompose the type of fun’ into expectedArgTy :→ _resultTy :
(expectedArgTy, _resultTy) ← checkFunctionTy (typeOf fun’)

-- Check whether expectedArgTy and the type of arg’ are the same (failing if not)

-- Refl is a proof the types coincide; matching on it reveals this fact to the type-checker:

Refl ← checkEqual expectedArgTy (typeOf arg’)
return (App fun’ arg’)

The use of an existential type is critical here. There is no way to knowwhat the type of an expression

is before checking it, and yet we need this type available for compile-time reasoning to be able

1
This well-worn idea perhaps originates in a paper by Pfenning and Lee [1989], though that paper does not use an indexed

datatype. Augustsson and Carlsson [1999] extend the idea to use a datatype, much as we have done here. A more in-depth

treatment of this example is the subject of a functional pearl by Eisenberg [2020].

2
This rendering of the example assumes the ability to write using dependent types, to avoid clutter. However, do not

be distracted: the dependent types could easily be encoded using singletons [Eisenberg and Weirich 2012; Monnier and

Haguenauer 2010], while we focus here on the use of existential types.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

64:6 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

to accept the final use of App. An example such as this one can be written today, but with extra

awkward packing and unpacking of existentials, or through the use of a continuation-passing

encoding. With the use of lightweight existentials, an example like this is easier to write, lowering

the barrier to writing richly typed, finely specified programs.

3 KEY IDEA: EXISTENTIAL PROJECTIONS

In our envisioned source language, introduction and elimination of existential types are implicit.

Precise locations are determined by type inference (as pinned down in Section 4)—accordingly,

these locations may be hard to predict. Once these locations have been identified, the compiler must

produce a fully annotated, typed core language that makes these introductions and eliminations

explicit. We provide a precise account of this core language in Section 5. But before we do that,

we use this section to informally justify why we need new forms in the first place. Why can we

no longer use the existing encoding of existential types (based on Mitchell and Plotkin [1988] and

Läufer [1996]) internally?

The key observation is that, since the locations of introductions and eliminations are hard to

predict, they must not affect evaluation. Any other design would mean that programmers lose the

ability to reason about when their expressions are reduced.

The existing datatype-based approach requires an existential-typed expression to be evaluated

to head normal form to access the type packed in the existential. This is silly, however: types are

completely erased, and yet this rule means that we must perform runtime evaluation simply to

access an erased component of a some data.

To illustrate the problem, consider this Haskell datatype:

data Exists (f :: Type→ Type) = ∀(a :: Type). Ex ! (f a)

With this construct, we can introduce existential types using the data constructor Ex and eliminate

them by pattern matching on Ex . Note the presence of the strictness annotation, written with !. A

use of the Ex data constructor, if it is automatically inserted by the type inferencer, must not block

reduction.
3

The difficult issue, however, is elimination. To access the value carried by Exists, we must use

pattern matching. We cannot use a straightforward projection function unExists :: Exists f → f ???:

it would allow the abstracted type variable to escape its scope—exactly why we cannot write a

well-scoped type signature for unExists. As a result, we cannot use this value without weak-head
evaluation of the term. As Section 3.2 shows, this forcing can decrease the laziness of our program.

While perhaps not as fundamental as our desire for introduction and elimination to be transparent

to evaluation, another design goal is to allow arbitrary let-inlining. In other words, if let x =

e1 in e2 type-checks, then e2 [e1 / x ] should also type-check. This property gives flexibility to

users: they (and their IDEs) can confidently refactor their program without fear of type errors.

Taken together, these design requirements—transparency to evaluation and support for let-
inlining—drive us to enhance our core language with strong existentials [Howard 1969]: existentials

that allow projection of both the type witness and the packed value, without pattern-matching.
4

3
Similarly, our choice of explicit introduction form for the core language must be strict in its argument if it is to be

unobservable.

4
Strong existentials stand in contrast to weak existentials. A strong existential package supports operators that access the

encapsulated type and datum, while a weak existential requires pattern-matching in order to extract the datum and bring its

type into scope. In a lazy language, strong existentials thus have greater expressive power, as we can use a lazy projection,

as we do here.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

An Existential Crisis Resolved 64:7

3.1 Strong Existentials via pack and open
Our core language FX adopts the following constructs for introducing and eliminating existential

types:
5

Pack

Γ ⊢ e : 𝜏2 [𝜏1/a]
Γ ⊢ pack 𝜏1, e as ∃ a.𝜏2 : ∃ a.𝜏2

Open

Γ ⊢ e : ∃ a.𝜏
Γ ⊢ open e : 𝜏 [⌊e : ∃ a.𝜏⌋ / a]

The pack typing rule is fairly standard [Pierce 2002, Chapter 24]. This term creates an existential

package, hiding a type 𝜏1 in the package with an expression e. Our operational semantics (Figure 7)

includes a rule that makes this construct strict.

To eliminate existential types, we use the open construct (from Cardelli and Leroy [1990]) instead

of pattern matching. The open construct eliminates an existential without forcing it, as opens are
simply erased during compilation. The type of open e is interesting: we substitute away the bound

variable a, replacing it with ⌊e : ∃ a.𝜏⌋. This type is an existential projection. The idea is that we can

think of an existential package ∃ a.𝜏 as a (dependent) pair, combining the choice for a (say, 𝜏0) with

an expression of type 𝜏 [𝜏0 / a]. The type ⌊e : ∃ a.𝜏⌋ projects out the type 𝜏0 from the pair.

A key aspect of open is that the type form ⌊e : ∃ a.𝜏⌋ is a completely opaque type. In our surface

language, ⌊e : ∃ a.𝜏⌋ is equal to itself and no other type. Computation is not necessary in types.

One way to think of this is to imagine that ⌊e : ∃ a.𝜏⌋ is like a fresh type variable whose name is

long—not as a construct that, say, accesses a type within e.

The simple idea of open is very powerful. It means that we can talk about the type in an

existential package without unpacking the package. It would even be valid to project out the type of

an existential package that will never be computed. Because types can be erased in our semantics,

even projecting out the type from a bottoming expression (of existential type) is harmless.
6

Note that the type of the existential package expression is included in the syntax for projections

⌊e : ∃ a.𝜏⌋: this annotation is necessary because expressions in our surface language X might have

multiple, different types. (For example, 𝜆x → x has both type Int → Int and type Bool → Bool.)
Including the type annotation fixes our interpretation of e, but see Section 6 for more on this point.

3.2 The unpack Trap

Adding the open term to the language comes at a cost to complexity. Let us take a moment to

reflect on why a more traditional elimination form (called unpack) is insufficient.

A frequent presentation of existentials in a language based on System F uses the unpack primitive.

Pierce [2002, Chapter 24] presents the idea with this typing rule:

Unpack

Γ ⊢ e1 : ∃ a.𝜏2

Γ, a, x:𝜏2 ⊢ e2 : 𝜏

a ∉ fv(𝜏)
Γ ⊢ unpack e1 as a, x in e2 : 𝜏

The idea is that unpack extracts out the packed expression in a variable x, also binding a type

variable a to represent the hidden type. The typing rule corresponds to the pattern-match in

case e1 of Ex (x :: a) → e2, where x and a are brought into scope in e2.
7

5
These rules are slightly simplified. The full rules appear in Section 5.

6
Readers may be alarmed at that sentence: how could ⌊⊥ : ∃ a.a⌋ be a valid type? Perhaps a more elaborate system might

want to reject such a type, but there is no need to. As all types are erased and have no impact on evaluation, an exotic type

like this is no threat to type safety.

7
See Eisenberg et al. [2018] for more details on how Haskell treats that type annotation.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

64:8 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

This approach is attractive because it is simple to add to a language like System F. It does not

require the presence of terms in types and the necessary machinery that we describe in Section 5.

However, it is also not powerful enough to accommodate some of the examples we would like to

support.

The unpack term impacts evaluation. Because it is based on pattern matching, the unpack term

must reduce its argument to a weak-head normal form before providing access to the hidden type.

The standard reduction rule looks like this:

unpack (pack 𝜏1, e1 as ∃ a.𝜏2) as a, x in e2 −→ e1 [e1/x] [𝜏1/a]

What this rule means is that the only parts of the term that have access to the abstract type are the

ones that are evaluated after the existential has been weak-head normalized. Without weak-head

normalizing the argument to a pack, we have nothing to substitute for x and a.

Let us rewrite the filter example from Section 2.2, making more details explicit so that we can

see why this is an issue.

filter :: ∀n a. (a→ Bool) → Vec n a→ ∃m. Vec m a
filter = Λn a→ 𝜆(p :: a→ Bool) (vec :: Vec n a) →

case vec of
(:>) n1 (x :: a) (xs :: Vec n1 a) -- vec is x :> xs
| p x → ...

| otherwise→ filter n1 a p xs
Nil → pack Zero,Nil as ∃m. Vec m a -- vec is Nil

The treatment above makes all type abstraction and application explicit. Note that the pattern-

match for the cons operator :> includes a compile-time (or type-level) binding for the length of the

tail, n1.
The question here is: what do we put in the ... in the case where p x holds? One possibility is to

apply the (:>) operator to build the result. However, right away, we are stymied: what do we pass

to that operator as the length of the resulting vector? It depends on the length of the result of the

recursive call. A use of unpack cannot help us here, as unpack is used in a term, not in a type

index; even if we could use it, we would have to return the packed type, not something we can

ordinarily do.

Instead, we must use unpack (and pack) before calling the (:>) operator. Specifically, we can
write

unpack filter n1 a p xs as n2, ys in pack n2, (:>) n2 x ys as ∃m. Vec m a

This use of unpack is type-correct, but we have lost the laziness of filter we so prized in Section

2.2.

On the other hand, open allows us to fill in the ...with the following code, using the the existential

projection to access the new (type-level) length for the arguments to pack and to :>.

let ys :: ∃m. Vec m a -- usual lazy let
ys = filter n1 a p xs

in pack ⌊ys :: ∃m. Vec m a⌋, (:>) ⌊ys :: ∃m. Vec m a⌋ x (open ys) as ∃m. Vec m a

As we expand on in the next subsection, we do not have to let-bind ys; instead, we could just repeat
the sub-expression filter n1 a p xs.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

An Existential Crisis Resolved 64:9

3.3 The Importance of Strength

Beyond the peculiarities of the filter example, having a lazy construct that accesses the abstracted

type in an existential package is essential to supporting inferrable existential types.

Here is a somewhat contrived example to illustrate this point:

data Counter a = Counter {zero :: a, succ :: a→ a, toInt :: a→ Int }
mkCounter :: String → ∃a.Counter a -- a counter with a hidden representation

mkCounter = ...

initial1 :: Int
initial1 = let c = mkCounter "hello" in (toInt c) (zero c)
initial2 :: Int
initial2 = (toInt (mkCounter "hello")) (zero (mkCounter "hello"))

We would like our language to accept both initial1 and initial2. After all, one of the benefits
of working in a pure, lazy language is referential transparency: programmers (and tools, such as

IDEs) should be able to perform expression inlining with no change in behavior. In both initial1
and initial2, the compiler must automatically eliminate the existential that results from each use

of mkCounter . In the definition initial1, elaboration is not difficult, even if we only have the weak

unpack elimination form to work with.

However, supporting initial2 is more problematic. Maintaining the order of evaluation of the

source language requires two separate uses of the elimination form.

To type-check the application of toInt (mkCounter "hello") to zero (mkCounter "hello"), we
must first know the type packed into the package returned from mkCounter "hello". Accessing
this type should not evaluate mkCounter "hello", however: a programmer rightly expects that

toInt is evaluated before any call to mkCounter is, which may have performance or termination

implications. More generally, we can imagine the need for a hidden type arbitrarily far away from

the call site of a function (such as mkCounter) that returns an existential; eager evaluation of the

function would be most unexpected for programmers.

Note that, critically, both calls to mkCounter in initial2 contain the same argument. Since we

are working in a pure context, we know that the result of the two calls to mkCounter "hello" in
initial2 must be the same, and thus that the program is well-typed.

In sum, if the compiler is to produce the elimination form for existentials, that elimination form

must be nonstrict, allowing the packed witness type to be accessed without evaluation. Any other

choice means that programmers must expect hard-to-predict changes to the evaluation order of

their program. In addition, if we wish to allow users to inline their let-bound identifiers, this

projection form must also be strong, and remember the existentially typed expression in its type.

Note that we are taking advantage of Haskell’s purity in this part of the design. We can soundly

support a strong elimination form like open only because we know that the expressions which

appear in types are pure. All projections of the type witness from the same expression will be equal.

In a language without this property, such as ML, we would need to enforce a value restriction on the

type projections. Such a value restriction would prevent us from injecting, say, a non-deterministic

expression into types; as there is no notion of evaluating a type, it would be unclear when and how

often to evaluate the expression which could yield different results at each evaluation.

4 INFERRING EXISTENTIALS

In this section we present the surface language, X, that we use to manipulate existentials, and the

bidirectional type system that infers them. As our concrete setting is in Haskell, our starting point

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

64:10 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

is the surface language described by Serrano et al. [2020], modified to add support for existentials.

We add a syntax for existential quantifiers ∃ a.𝜖 and existential projections ⌊e : 𝜖⌋. An important

part of our type system is the type instantiation mechanism, which implicitly handles the opening

of existentials (Section 4.3).

4.1 Language Syntax

The syntax of our types is given in Figure 2.

𝜎 ::= 𝜖 | ∀ a.𝜎 universally quantified type

𝜖 ::= 𝜌 | ∃ b.𝜖 existentially quantified type

𝜌 ::= 𝜏 | 𝜎1 → 𝜎2 top-level monomorphic type

𝜏 ::= a | Int | 𝜏1 → 𝜏2 | ⌊e : 𝜖⌋ monomorphic type

a, b ::= . . . type variable

Γ ::= ∅ | Γ, a | Γ, x:𝜎 typing context

Fig. 2. Type stratification

Polytypes 𝜎 can quantify an arbitrary number (including 0) universal variables and, within the

universal quantification, an arbitrary number (including 0) existential variables. This stratification is

enforced through the distinction between 𝜎-types and 𝜖-types. Note that the type ∃ a.∀ b.𝜏 is ruled

out.
8
Top-level monotypes 𝜌 have no top-level quantification. Monotypes 𝜏 include a projection

form ⌊e : 𝜖⌋ that occurs every time an existential is opened, as described in Section 3.1. Universal

and existential variables draw from the same set of variable names, denoted with a or b.

The expressions of X are defined as follows:

x ::= . . . term variable

n ::= . . . integer literal

e ::= h 𝜋 | 𝜆x .e | let x = e1 in e2 | n expression

h ::= x | e | e :: 𝜎 expression head

𝜋 ::= e | 𝜎 argument

Fig. 3. Our surface language, X

This language is a fairly small 𝜆-calculus, with type annotations and 𝑛-ary application (including

type application). The expression h 𝜋1 ... 𝜋n applies a head to a sequence of arguments 𝜋i that can

be expressions or types. The head is either a variable 𝑥 , an annotated expression e :: 𝜎 , or an

expression e that is not an application.
9

An important complication of our type system is that expressions may appear in types: this

happens in the projection form ⌊e : 𝜖⌋. We thus must address how to treat type equality. For

example, suppose term variable x (of type Int) is free in a type 𝜏 ; is 𝜏 [(𝜆y.y) 1 / x] equal to 𝜏 [1 / x]?
8
As usual, stratifying the grammar of types simplifies type inference. In our case, this choice drastically simplifies the

challenge of comparing types with mixed quantifiers. Dunfield and Krishnaswami [2019, Section 2] have an in-depth

discussion of this challenge.

9
Our grammar does not force a head expression h to be something other than an application, but we will consistently

assume this restriction is in force. It would add clutter and obscure our point to bake this restriction in the grammar.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

An Existential Crisis Resolved 64:11

Γ ⊢∀ e⇐ 𝜎 (Universal type checking)

Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏]
fv(𝜏) ⊆ dom(Γ, 𝑎)
Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌

Γ ⊢ e⇒ 𝜌 Γ ⊢ e⇐ 𝜌 (Type synthesis and type checking)

App

Γ ⊢ℎ h⇒ 𝜎

Γ ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r
𝑒 = exprargs(𝜋)
Γ ⊢∀ ei ⇐ 𝜎i

Γ ⊢ h 𝜋 ⇔ 𝜌r

iAbs

Γ, x:𝜏 ⊢ e⇒ 𝜌

fv(𝜏) ⊆ dom(Γ) 𝑎 fresh
𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋

x
] (see §4.2.3)

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′

cAbs

Γ, x:𝜎1 ⊢∀ e⇐ 𝜎2

fv(𝜎1) ⊆ dom(Γ)
Γ ⊢ 𝜆x .e⇐ 𝜎1 → 𝜎2

Int

Γ ⊢ n⇔ Int

Let

Γ ⊢ e1 ⇒ 𝜌1

𝑎 = fv(𝜌1)\dom(Γ)
Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [e1 / x]

Γ ⊢ℎ h⇒ 𝜎 (Head synthesis)

H-Var

x:𝜎 ∈ Γ
Γ ⊢ℎ x ⇒ 𝜎

H-Ann

Γ ⊢∀ e⇐ 𝜎

fv(𝜎) ⊆ dom(Γ)
Γ ⊢ℎ (e :: 𝜎) ⇒ 𝜎

H-Infer

Γ ⊢ e⇒ 𝜌

Γ ⊢ℎ e⇒ 𝜌

Fig. 4. Type inference for X

That is, does type equality respect 𝛽-reduction? Our answer is “no”: we restrict type equality in

our language to be syntactic equality (modulo 𝛼-equivalence, as usual). We can imagine a richer

type equality relation—which would accept more programs—but this simplest, least expressive

version satisfies our needs. (However, see Aside 2 in Section 7.3 for a wrinkle here.) Adding such

an equality relation is largely orthogonal to the concerns around existential types that draw our

focus.
10

4.2 Type System

The typing rules of our language appear in Figure 4. This bidirectional type system uses two forms

for typing judgments: Γ ⊢ e ⇒ 𝜌 means that, in the type environment Γ, the program e has the

inferred type 𝜌 , while Γ ⊢ e ⇐ 𝜌 means that, in the type environment Γ, e is checked to have

type 𝜌 . We also use a third form to simplify the presentation of the rules: Γ ⊢ e⇔ 𝜌 , which means

that the rule can be read by replacing⇔ with either⇒ or⇐ in both the conclusion and premises.

Although the rules are fairly close to the standard rules of a typed 𝜆-calculus, handling existentials

through packing and opening has an impact on the rules Let and Gen.

10
Our core language FX does need to think harder about this question, in order to prove type safety. See Section 5.1.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

64:12 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

We review the rules in Figure 4 here, deferring the most involved rule, App, until after we discuss

the instantiation judgment ⊢inst, in Section 4.3.

4.2.1 Simple Subsumption. Bidirectional type systems typically rely on a reflexive, transitive

subsumption relation ⩽, where we expect that if e : 𝜎1 and 𝜎1 ⩽ 𝜎2, then e : 𝜎2 is also derivable.

For example, we would expect that ∀ a.a→ a ⩽ Int→ Int. This subsumption relation is then used

when “switching modes”; that is, if we are checking an expression e against a type 𝜎2 where e has a

form resistant to type propagation (the case when e is a function call), we infer a type 𝜎1 for e and

then check that 𝜎1 ⩽ 𝜎2.

However, our type system refers to no such ⩽ relation: we essentially use equality as our

subsumption relation, invoking it implicitly in our rules through the use of a repeated metavariable.

(Though hard to see, the repeated metavariable is the 𝜌r in rule App, when replacing the⇔ in the

conclusion with a⇐.) We get away with this because our bidirectional type-checking algorithm

works over top-level monotypes 𝜌 , not the more general polytype 𝜎 . A type 𝜌 has no top-level

quantification at all. Furthermore, our type system treats all types as invariant—including→. This

treatment follows on from the ideas in Serrano et al. [2020, Section 5.8], which describes how

Haskell recently made its arrow type similarly invariant.

We adopt this simpler approach toward subsumption both to connect our presentation with the

state-of-the-art for type inference in Haskell [Serrano et al. 2020] and also because this approach

simplifies our typing rules. We see no obstacle to incorporating our ideas with a more powerful

subsumption judgment, such as the deep-skolemization judgment of Peyton Jones et al. [2007,

Section 4.6.2] or the slightly simpler co- and contravariant judgment of Odersky and Läufer [1996,

Figure 2].

4.2.2 Checking against a Polytype. Rule Gen, the sole rule for the Γ ⊢∀ e ⇐ 𝜎 judgment, deals

with the case when we are checking against a polytype 𝜎 . If we want to ensure that e has type 𝜎 ,

then we must skolemize any universal variables bound in 𝜎 : these variables behave essentially as

fresh constants while type-checking e. Rule Gen thus just brings them into scope.

On the other hand, if there are existential variables bound in 𝜎 , then we must instantiate these.

If we are checking that e has some type ∃ a.𝜏0, that means we must find some type 𝜏 such that e

has type 𝜏0 [𝜏 / a]. This is very different than the skolemization of a universal variable, where we

must keep the variable abstract. Instead, when checking against ∃ a.𝜖 , we guess a monotype 𝜏 and

check e against the type 𝜖 [𝜏 / a]. Rule Gen simply does this for nested existential quantification

over variables 𝑏. A real implementation might use unification variables, but we here rely on the

rich body of literature [e.g., Dunfield and Krishnaswami 2013] that allows us to guess monotypes

during type inference, knowing how to translate this convention into an implementation using

unification variables.

4.2.3 Abstractions. Rule iAbs synthesizes the type of a 𝜆-abstraction, by guessing the (mono)type

𝜏 of the bound variable and then inferring the type of the body e to be 𝜌 . However, rule iAbs

also can pack existentials. This is necessary to avoid skolem escape: it is possible that the type 𝜌

contains x free. However, it would be disastrous if 𝜆x .e was assigned a type mentioning x, as x is

no longer in scope.

For example, suppose we have Γ = f :Int→ ∃ a.a→ Bool. Now, consider inferring the type 𝜌 in

Γ ⊢ 𝜆x .f x ⇒ 𝜌 . Guessing x : Int, we will infer Γ, x:Int ⊢ f x ⇒ ⌊f x : ∃ a.a→ Bool⌋ → Bool. It is
tempting, then, to say Γ ⊢ 𝜆x .f x ⇒ Int→ ⌊f x : ∃ a.a→ Bool⌋ → Bool, but this is wrong: the type
mentions x free, but Γ does not bind x. Instead, rule iAbs infers Γ ⊢ 𝜆x .f x ⇒ ∃ a.Int→ a→ Bool,
by using a instead of the ill-scoped ⌊f x : ∃ a.a→ Bool⌋.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

An Existential Crisis Resolved 64:13

More generally, we must identify all existential projections within 𝜌 that have x free. These are

replaced with fresh variables 𝑎. We use the notation ⌊𝜌⌋
x
to denote the list of projections in 𝜌 ;

multiple projections of the same expression (that is, multiple occurrences of ⌊e0 : 𝜖0⌋ for some e0

and 𝜖0) are commoned up in this list. Formally,

⌊𝜌⌋
x
= {⌊e : 𝜖⌋ | (⌊e : 𝜖⌋ is a sub-expression of 𝜌) ∧ (x is a free variable in e)} .

The notation 𝜌 [𝑎 / ⌊𝜌⌋
x
] denotes the type 𝜌 where the 𝑎 are written in place of these projections.

Note that this notation is set up backward from the way it usually works, where we substitute some

type for a variable. Here, instead, we are replacing the type with a fresh variable.

In the conclusion of the rule, we existentially quantify the 𝑎, to finally obtain a function type of

the form 𝜏 → ∃𝑎.𝜌 ′.11
The checking rule cAbs is much simpler. We know the type of the bound variable by decomposing

the known expected type 𝜎1 → 𝜎2. We also need not worry about skolem escape because we have

been provided with a well-scoped 𝜎2 result type for our function. The only small wrinkle is the

need to use ⊢∀ in order to invoke rule Gen to remove any quantifiers on the type 𝜎2.

4.2.4 Let Skolem-escape. Rule Let deals with let-expressions, both in synthesis and in checking

modes. It performs standard let-generalization, computing generalized variables 𝑎 by finding the

free variables in 𝜌1 and removing any variables additionally free in Γ. Indeed, all that is unexpected
in this rule is the type substitution in the conclusion.

The problem, like with rule iAbs is the potential for skolem-escape. The variable x might appear

in the type 𝜌2. However, x is out of scope in the conclusion, and thus it cannot appear in the overall

type of the let-expression. One solution to this problem would be to pack all the existentials that fall

out of scope, much like we do in rule iAbs. However, doing so would mean that our bidirectional

type system now infers existential types 𝜖 instead of top-level monomorphic types 𝜌 ; keeping

with the simpler 𝜌 is important to avoid the complications of a non-trivial subsumption judgment.

Hence we choose to replace all occurrences of x inside of projections by the expression e1. This

does not pose a problem since e1 is well-typed according to the premises of the Let rule.

4.2.5 Inferring the Types of Heads. Following Serrano et al. [2020], our system treats 𝑛-ary applica-

tions directly, instead of recurring down a chain of binary applications e1 e2. The head of an 𝑛-ary

application is denoted with h; heads’ types are inferred with the Γ ⊢ℎ h⇒ 𝜎 judgment. Variables

simply perform a context lookup, annotated expressions check the contained expression against the

provided type, and other expressions infer a 𝜌-type. It is understood here that we use rule H-Infer

only when the other rules do not apply, for example, for 𝜆-abstractions.

4.3 Instantiation Semantics

The instantiation rules of Figure 5 present an auxiliary judgment used in type-checking applications.

The judgment Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r means: with in-scope variables Γ, apply function e of

type 𝜎 to arguments 𝜋 requires exprargs(𝜋) (the value arguments) to have types 𝜎 , resulting in an

expression e 𝜋 of type 𝜌r . This judgment is directly inspired by Serrano et al. [2020, Figure 4].

The idea is that we use ⊢inst to figure out the types of term-level arguments to a function in a

pre-pass that examines only type arguments. Having determined the expected types of the term-

level arguments 𝜎 , rule App (in Figure 4) actually checks that the arguments have the correct types.

This pre-pass is not necessary in order to infer the types for existentials, but it sets the stage for

Section 8, where we integrate our design with the current implementation in GHC.

11
Our language works well without this special substitution. Instead, we could have a check that the final inferred type in

rule iAbs is well scoped. However, this extra existential packing is easy enough to add, and so we have.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

64:14 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r (Instantiation judgment)

ITyArg

Γ ⊢inst e 𝜎 ′ : 𝜎 [𝜎 ′ / a] ; 𝜋 { 𝜎 ; 𝜌r
fv(𝜎 ′) ⊆ dom(Γ)

Γ ⊢inst e : ∀ a.𝜎 ; 𝜎 ′, 𝜋 { 𝜎 ; 𝜌r

IArg

Γ ⊢inst e e′ : 𝜎2 ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : (𝜎1 → 𝜎2) ; e
′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r

IAll

𝜋 ≠ 𝜎 ′, 𝜋 ′

Γ ⊢inst e : 𝜎 [𝜏 / a] ; 𝜋 { 𝜎 ; 𝜌r
fv(𝜏) ⊆ dom(Γ)

Γ ⊢inst e : ∀ a.𝜎 ; 𝜋 { 𝜎 ; 𝜌r

IExist

Γ ⊢inst e : 𝜖 [⌊e : ∃ a.𝜖⌋ / a] ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : ∃ a.𝜖 ; 𝜋 { 𝜎 ; 𝜌r

IResult

Γ ⊢inst e : 𝜌r ; [] { [] ; 𝜌r

Fig. 5. Instantiation

Application. Rule ITyArg handles type application by instantiating the bound variable a with

the supplied type argument 𝜎 ′. Rule IArg handles routine expression application simply by remem-

bering that the argument should have type 𝜎1. Note that we do not check that the argument e
′
has

type 𝜎1 here.

Quantifiers. Rule IAll deals with universal quantifiers in the function’s type by instantiating

with a guessed monotype 𝜏 . The first premise is to avoid ambiguity with rule ITyArg; we do not

wish to guess an instantiation when the user provides it explicitly with a type argument.

Rule IExist eagerly opens existentials by substituting a projection in place of the bound variable

a. This is the only place in the judgment where we need the function expression e: whenever we

open an existential type, we must remember what expression has that type, so that we do not

confuse two different existentially packed types.

For example, if f has type Bool→ ∃ b.(b, b→ Int), then the function application f True will be
given the opened pair type:

(⌊f True : ∃ b.(b, b→ Int)⌋, ⌊f True : ∃ b.(b, b→ Int)⌋ → Int)
Rule IResult concludes computing the instantiation in a function application by copying the

function type to be the result type.

The App rule. Having now understood the instantiation judgment, we turn our attention to

ruleApp. After inferring the type 𝜎 for an application head h, 𝜎 gets instantiated, revealing argument

types 𝜎 . Each argument ei is checked against its corresponding type 𝜎i, where the entire function

application expression has type 𝜌r . Rule App operates in both synthesis and checking modes. When

synthesizing, it simply returns 𝜌r from the instantiation judgment; when checking, it ensures

that the instantiated type 𝜌r matches what was expected. We need do no further instantiation or

skolemization because we have a simple subsumption relation.

5 CORE LANGUAGE

Perhaps we can infer existential types using existential projections ⌊e : 𝜖⌋, but how do we know

such an approach is sound? We show that it is by elaborating our surface expressions into a core

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

An Existential Crisis Resolved 64:15

language FX, inspired by a similar language described by Cardelli and Leroy [1990, Section 4], and

we prove the standard progress and preservation theorems of this language. This section presents

FX and states key metatheory results; the following section connects X to FX by presenting our

elaboration algorithm.

The syntax of FX is in Figure 6 and selected typing rules are in Figure 7; full typing rules appear

in the appendix.
12
Note that we use upright Latin letters to denote FX expressions and types; when

we mix X and FX in close proximity, we additionally use colors.

B ::= →| Int | . . . base type

t, r, s ::= a | B t | ∀ a.t | ∃ a.t | ⌊e⌋ type

e, h ::= x | n | 𝜆x:t.e | e1 e2 | Λa.e | e t | pack t, e as t2

| open e | let x = e1 in e2 | e ▷ 𝛾 expression

v ::= n | 𝜆x:t.e | Λa.v | pack t, v as t2 value

𝛾 ::= ⟨t⟩ | sym𝛾 | 𝛾1 ;; 𝛾2 | ⌊𝜂⌋ | 𝛾1
@𝛾2 | projpack t, e as t2 | . . . type coercion

𝜂 ::= e ▷ 𝛾 | step e expression coercion

G ::= ∅ | G, x : t | G, a typing context

Fig. 6. Syntax of the core language, FX

The nub of FX is System F, with fully applied base types B (because they are fully applied, we

do not need to have a kind system) and ordinary universal quantification. We thus omit typing

rules from this presentation that are standard. The inclusion of existential types, pack and open is

fitting for a core language supporting existentials. This language necessarily has mutually recursive

grammars for types and expressions, but the typing rules are not mutually recursive: rule CT-Proj

shows that a projection in a type is well-formed when the expression is well-scoped. (The ⊢ G ok
premise refers to a routine context-well-formedness judgment, omitted.) We do not require the

existential package to be well-typed (though it would be, in practice).

5.1 Coercions

The biggest surprise in FX is its need for type and expression coercions. The motivation for these

can be seen in rule CS-OpenPack. If we are stepping an expression open (pack t, v as∃ a.t2), we
want to extract the value v from the existential package. The problem is that v has the wrong type.

Suppose that v has type t0. Then, we have pack t, v as∃ a.t2 : ∃ a.t2 and open (pack t, v as∃ a.t2) :

t2 [⌊pack t, v as∃ a.t2⌋ / a], according to rule CE-Open. This last type is not syntactically the same

as t0, although it must be that t0 = t2 [t / a] to satisfy the premises of rule CE-Pack. Because the

type of the opened existential does not match the type of the packed value, a naïve reduction rule

like G ⊢ open (pack t, v as t2) −→ v would not preserve types.

There are, in general, two ways to build a type system when encountering such a problem. We

could have a non-trivial type equality relation, where we say that ⌊pack t, e as t2⌋ ≡ t. Doing so

would simplify the reduction rules, but this simplification comes at a cost: our language would now

have a conversion rule that allows an expression of one type t1 to have another type t2 as long as

t1 ≡ t2. This rule is not syntax-directed; accordingly, it is hard to determine whether type-checking

remains decidable. Furthermore, a non-trivial type equality relation makes proofs considerably

more involved. In effect, we are just moving the complexity we see in the right-hand side of a rule

like rule CS-OpenPack into the proofs.

12
https://richarde.dev/papers/2021/exists/exists-extended.pdf

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.

https://richarde.dev/papers/2021/exists/exists-extended.pdf


736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

64:16 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

G ⊢ e : t (Expression typing)

CE-Abs

G, x : t1 ⊢ e : t2

x ∉ fv(t2)
G ⊢ 𝜆x:t1.e : t1 → t2

CE-Let

G ⊢ e1 : t1

G, x : t1 ⊢ e2 : t2

G ⊢ let x = e1 in e2 : t2 [e1 / x]

CE-Pack

G ⊢ t : type
G ⊢ ∃ a.t2 : type
G ⊢ e : t2 [t / a]

G ⊢ pack t, e as∃ a.t2 : ∃ a.t2

CE-Open

G ⊢ e : ∃ a.t
G ⊢ open e : t[⌊e⌋ / a]

CE-Cast

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : t2

G ⊢ t : type (Type well-formedness)

CT-Proj

⊢ G ok fv(e) ⊆ dom(G)
G ⊢ ⌊e⌋ : type

G ⊢ 𝛾 : t1 ∼ t2 (Type coercion typing)

CG-Refl

G ⊢ t : type

G ⊢ ⟨t⟩ : t ∼ t

CG-Sym

G ⊢ 𝛾 : t1 ∼ t2

G ⊢ sym𝛾 : t2 ∼ t1

CG-Trans

G ⊢ 𝛾1 : t1 ∼ t2

G ⊢ 𝛾2 : t2 ∼ t3

G ⊢ 𝛾1 ;; 𝛾2 : t1 ∼ t3

CG-Proj

G ⊢ 𝜂 : e1 ∼ e2

G ⊢ ⌊𝜂⌋ : ⌊e1⌋ ∼ ⌊e2⌋

CG-InstExists

G ⊢ 𝛾1 : (∃ a.t1) ∼ (∃ a.t2)
G ⊢ 𝛾2 : t3 ∼ t4

G ⊢ 𝛾1
@𝛾2 : t1 [t3 / a] ∼ t2 [t4 / a]

CG-ProjPack

G ⊢ pack t, e as t2 : t2

G ⊢ projpack t, e as t2 : ⌊pack t, e as t2⌋ ∼ t

G ⊢ 𝜂 : e1 ∼ e2 (Expression coercion typing)

CH-Coherence

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : e ∼ (e ▷ 𝛾)

CH-Step

G ⊢ e : t

G ⊢ e
′

: t G ⊢ e −→ e
′

G ⊢ step e : e ∼ e
′

G ⊢ e −→ e
′

(Small-step operational semantics)

CS-PackCong

G ⊢ e −→ e
′

G ⊢ pack t, e as t2 −→ pack t, e′ as t2

CS-OpenPack

G ⊢ open (pack t, v as t2) −→ v ▷ ⟨t2⟩@(sym (projpack t, v as t2))

CS-OpenCong

G ⊢ e : t G ⊢ e −→ e
′

G ⊢ open e −→ open e
′ ▷ ⟨t⟩@(sym ⌊step e⌋)

Fig. 7. Selected typing and reduction rules of the core language, FX

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

An Existential Crisis Resolved 64:17

The alternative approach to a non-trivial equality relation is to use explicit coercions, as we have

here. The cost is clutter. Casts sully our reduction steps, and we need to explicitly shunt coercions

in several (omitted, unenlightening) reduction rules—for example, when reducing ((𝜆x:t.e1) ▷ 𝛾) e2

where the cast intervenes between a 𝜆-abstraction and its argument. Despite the presence of these

rules in our operational semantics, coercions can be fully erased: we can write an alternative,

untyped operational semantics that omits coercions entirely. Theorem 7.2 shows that erasure

preserves program behavior.

Both approaches—an enriched definitional equality vs. explicit coercions—are essentially equiv-

alent: we can view explicit coercions simply as an encoding of the derivation of an equality

judgment.
13
We choose explicit coercions both because FX is a purely internal language (and thus

clutter is less noisome) and because it allows for an easy connection to the implementation of the

core language in GHC, based on System FC [Sulzmann et al. 2007], with similar explicit coercions.

The coercion language for FX includes constructors witnessing that they encode an equivalence

relation (rules CG-Refl, CG-Sym, and CG-Trans), along with several omitted forms showing that

the equivalence is also a congruence over types. Coercions also include several decomposition

operations; rule CG-InstExists shows one, used in our reduction rules. The two forms of interest

to use are ⌊𝜂⌋ (rule CG-Proj) and projpack (rule CG-ProjPack). The former injects the equivalence

relation on expressions (witnessed by expression coercions 𝜂) into the type equivalence relation,

and the latter witnesses the equivalence between ⌊pack t, e as t⌋ and its packed type t.

The equivalence relation on expressions is surprisingly simple: we need only the two rules in

Figure 7. These rules allow us to drop casts (supporting a coherence property which states that the

presence of casts is essentially unimportant) and to reduce expressions.

5.2 Metatheory

We prove (almost) standard progress and preservation theorems for this language:

Theorem 5.1 (Progress). If G ⊢ e : t, where G contains only type variable bindings, then one of

the following is true:

(1) there exists e
′
such that G ⊢ e −→ e

′
;

(2) e is a value v; or

(3) e is a casted value v ▷ 𝛾 .

Theorem 5.2 (Preservation). If G ⊢ e : t and G ⊢ e −→ e
′
, then G ⊢ e

′
: t.

In addition, we prove that types can still be erased in this language. Let |e| denote the expression e

with all type abstractions, type applications, packs, opens and casts dropped. Furthermore, overload

−→ to mean the reduction relation over the erased language.

Theorem 5.3 (Erasure). If G ⊢ e −→∗ e
′
, then |e| −→∗ |e′ |.

The proofs largely follow the pattern set by previous papers on languages with explicit coercions

and are unenlightening. They appear, in full, in the appendix.

6 ELABORATION

We now augment our inference rules from Section 4 to describe the elaboration from the surface

languageX into our core FX. The notation⇒ denotes elaboration of a surface term, type or context

into its core equivalent. Some of our rules appear in Figure 8. The rest appear in the appendix. In

order to aid understanding, we use blue for X terms and red for FX terms.

13
Weirich et al. [2017] makes this equivalence even clearer by presenting two proved-equivalent versions of a language, one

with a non-trivial, undecidable type equality relation and another with explicit coercions.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

64:18 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Γ ⊢∀ e⇐ 𝜎 ⇒ e elaboration of polymorphic expressions

Γ ⊢ e⇔ 𝜌 ⇒ e elaboration of expressions

Γ ⊢ℎ h⇒ 𝜎 ⇒ h elaboration of application heads

Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er elaboration of application spines

𝜎 ⇒ s elaboration of types

Γ ⇒ G elaboration of typing contexts

Elab-Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏] ⇒ e

𝜏 ⇒ t 𝜌 ⇒ r

fv(𝜏) ⊆ dom(Γ, 𝑎)
Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌 ⇒ Λ𝑎.pack t, e as∃𝑏.r

Elab-iAbs

𝑎 fresh
Γ, x:𝜏 ⊢ e⇒ 𝜌 ⇒ e

fv(𝜏) ⊆ dom(Γ)
𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋

x
] 𝜏 ⇒ t

𝜌 ⇒ r 𝜌 ′ ⇒ r
′

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′ ⇒ 𝜆x:t.pack ⌊r⌋
x
, e as∃𝑎.r′

Elab-App

Γ ⊢ℎ h⇒ 𝜎 ⇒ h

Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢ h 𝜋 ⇔ 𝜌r ⇒ er

Elab-IArg

Γ ⊢∀ e′⇐ 𝜎1 ⇒ e
′

Γ ⊢inst e e′ : 𝜎2 ⇒ e e
′

; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : (𝜎1 → 𝜎2) ⇒ e ; e
′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r ⇒ er

Elab-IExist

Γ ⊢inst e : 𝜖 [⌊e : ∃ a.𝜖⌋ / a] ⇒ open e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∃ a.𝜖 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IResult

Γ ⊢inst e : 𝜌r ⇒ er ; [] { [] ; 𝜌r ⇒ er

Fig. 8. Judgments and selected rules for elaborating from X into FX.

The rules in Figure 8 allow packing multiple existentials at once, when given a list of types as

the first argument to pack; see rules Elab-Gen and Elab-iAbs. Rule Elab-Gen checks a surface

expression e against an expected type ∀𝑎.∃𝑏.𝜌 . We see that the result of elaboration uses nested

Λ-abstractions and our nested pack notation to produce an FX expression that has the desired

type. Rule Elab-iAbs echoes rule iAbs, producing an FX expression with packs necessary to

accommodate any projections that mention the bound variable x; recall the special treatment of

such projections from Section 4.2.3.

Rule Elab-App elaborates the head h to h, and then calls the ⊢inst judgment. This judgment takes

the elaborated h as an input (despite its appearance on the right of a⇒). This input of an elaborated

expression is built up as the application spine is checked, to be returned in rule Elab-IResult.

In order to build this elaborated expression as we go, rule Elab-IArg elaborates arguments, in

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

An Existential Crisis Resolved 64:19

contrast to our original rule IArg; rule Elab-App then no longer needs to check these arguments in

a second pass.
14
Rule Elab-IExist is the place where open is introduced, as it open an expression

with an existential type.

The omitted rules all appear in the appendixand broadly follow the pattern set here.

6.1 Tweaking the IExist Rule

In the instantiation judgment for the surface language (Figure 5), rule IExist opens existentials.

That is, given an expression e with an existential type ∃ a.𝜖 , it infers for e the type resulting from

replacing the type variable with the projection ⌊e : ∃ a.𝜖⌋. However, these projections pose a

problem during the elaboration process. Specifically, if we have an application e1 e2 such that

e1 expects an argument whose type mentions ⌊e0 : 𝜖⌋—and e2 indeed has a type mentioning

⌊e0 : 𝜖⌋—we cannot be sure that the application remains well-typed after elaboration. After all,

type-checking in X is non-deterministic, given the way it guesses instantiations and the types of

𝜆-bound variables. Another wrinkle is that ⌊e0 : 𝜖⌋ might appear under binders, making it even

easier for type inference to come to two different conclusions when computing Γ ⊢∀ e0 ⇐ 𝜖 .

There are two approaches to fix this problem: we can require our elaboration process to be

deterministic, or we can modify rule IExist to make sure that projections in the surface language

actually use pre-elaborated core expressions. We take the latter approach, as it is simpler and more

direct. However, we discuss later in this section the possible disadvantages of this choice, and a

route to consider the first one.

Accordingly, we now introduce the following new IExistCore and rule LetCore rules, replacing

rules IExist and rule Let:

IExistCore

Γ ⊢∀ e⇐ ∃ a.𝜖 ⇒ e

Γ ⊢inst e : 𝜖 [⌊e⌋ / a] ; 𝜋 { 𝜎 ; 𝜌r

Γ ⊢inst e : ∃ a.𝜖 ; 𝜋 { 𝜎 ; 𝜌r

LetCore

Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

𝑎 = fv(𝜌1)\dom(Γ)
Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [Λ𝑎.e1 / x]

Fig. 9. Updated rules to support FX expressions in X types

Now, the elaboration process 𝜏 ⇒ t is indeed deterministic, making⇒ a function on types 𝜏 and

contexts Γ. Having surmounted this hurdle, elaboration largely very straightforward.

6.2 A Different Approach

We may want to refrain from using core expressions inside of projections, because doing so

introduces complexity for the programmer who is not otherwise exposed to the core language. To

wit, X would keep using projections of the form ⌊e : 𝜖⌋, where we understand that Γ ⊢∀ e⇐ 𝜖 in

the ambient context Γ, while FX uses the form ⌊e⌋.
It is vitally important that, if our surface-language typing rules accept a program, the elaborated

version of that program is type-correct. (We call this property soundness; it is Theorem 7.1.) Yet, if

elaboration of types is non-deterministic, we will lose this property, as explained above.

14
Knowledgeable readers will wonder how this new treatment interacts with the Quick-Look algorithm, which critically

depends on waiting to type-check arguments after a quick look at the entire argument spine. The solution is to be lazy: the

elaborated is not needed until after all arguments have been checked. Accordingly, we could, for example, use a mutable

cell to hold the elaborated expression, and then fill in this cell only during the second pass. Our formal presentation here

need not worry about this technicality, however.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

64:20 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

This alternative approach is simply to assume that elaboration is deterministic. Doing so is

warranted because, in practice, a type-checker implementation will proceed deterministically—it

seems far-fetched to think that a real type-checker would choose different types for the same

expression and expected type, if any. In essence, a deterministic elaborator means that we can

consider ⌊e : 𝜖⌋ as a proxy for ⌊e⌋. The first is preferable to programmers because it is written in the

language they program in. However, a type-checker implementation may choose to use the latter,

and thus avoid the possibility of unsoundness from arising out of a non-deterministic elaborator.

7 ANALYSIS

The surface language X allows us to easily manipulate existentials in a 𝜆-calculus while delegating

type consistency to an explicit core language FX. The following theorems establish the soundness

of this approach, via the elaboration transformation ⇒, as well as the general expressivity and

consistency of our bidirectional type system.

7.1 Soundness

If our surface language is to be type safe, we must know that any term accepted in the surface

language corresponds to a well-typed term in the core language:

Theorem 7.1 (Soundness).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then G ⊢ e : s, where Γ ⇒ G and 𝜎 ⇒ s.

(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

Furthermore, in order to eliminate the possibility of a trivial elaboration scheme, we would

want the elaborated term to behave like the surface-language one. We capture this property in this

theorem:

Theorem 7.2 (Elaboration erasure).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then |e | = |e|.
(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then |e | = |e|.
(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then |e | = |e|.

This theorem asserts that, if we remove all type annotations and applications, the X expression

is the same as the FX one.

7.2 Conservativity

Not only do we want our X programs to be sound, but we also want X to be a comfortable language

to program in. As our language is an extension of Hindley-Milner, we know that all the conveniences

programmers are used to in that setting carry over here.

Theorem 7.3 (Conservative extension of Hindley-Milner). If e has no type arguments or

type annotations, and Γ, e, 𝜏 , 𝜎 contain no existentials, then:

(1) (Γ ⊢𝐻𝑀 e : 𝜏) implies (Γ ⊢ e⇒ 𝜏)
(2) (Γ ⊢𝐻𝑀 e : 𝜎) implies

(
Γ ⊢∀ e⇐ 𝜎

)
where ⊢𝐻𝑀 denotes typing in the Hindley-Milner type system, as described by Clément et al. [1986,

Figure 3].

7.3 Stability

The following theorems denote stability properties [Bottu and Eisenberg 2021]. In other words,

they ensure that small user-written transformations do not change drastically the static semantics

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

An Existential Crisis Resolved 64:21

Theorem 7.4 tells us that expanding out a well-typed let remains well typed. However,

if we selectively expand a repeated let, a larger expression may become ill typed. Suppose

we have f ::Int → ∃a. (a, a→ Int) andwrite (snd (f (let x = 5 in x+x))) (fst (f (let x =

5 in x+x))). That expression is a well-typed Int . However, if we inline only one of the lets,
to (snd (f (5 + 5))) (fst (f (let x = 5 in x + x))), we now have an ill-typed expression.

The problem is that our language uses a very fine-grained expression equality relation:

just 𝛼-equivalence. Accordingly, let x = 5 in x + x and 5 + 5 are considered distinct,

and when these expressions appear in types (via existential projections), the types are

different.

The solution is straightforward, if not entirely lightweight: extend the expression

equality relation. Doing so would require a more explicit treatment of equality in our

type inference algorithm (in particular, rule App of Figure 4 would need to invoke the

equality relation), as well as additions to FX to accommodate this new development. It

is not clear whether the added expressiveness are worth the complexity cost, and so we

kept our equivalence relationship simple for ease of presentation.

Aside 2. Selective let-inlining sometimes causes trouble

of our programs. The let-inlining property is specifically permitted by our approach to existentials,

and it is a major feature of our type system.

Theorem 7.4 (let-inlining). If x is free in e2 then:

(Γ ⊢ let x = e1 in e2 ⇒ 𝜌) implies (Γ ⊢ e2 [e1 / x] ⇒ 𝜌)
(Γ ⊢∀ let x = e1 in e2 ⇐ 𝜎) implies (Γ ⊢∀ e2 [e1 / x] ⇐ 𝜎)

Interestingly, the system we present here does not support a small generalization of the let-
inlining property, as we explore in Aside 2.

This next theorem tells us that the order variables appear in an existential quantification does

not affect usage sites:

Theorem 7.5 (Order of Quantification does not matter). Let 𝜌 ′ (resp. 𝜎 ′) be two types that
differ from 𝜌 (resp. 𝜎) only by the ordering of quantified type variables in their (eventual) existential

types. Then:

(1) (Γ ⊢ e⇒ 𝜌) if and only if (Γ ⊢ e⇒ 𝜌 ′)
(2) (Γ ⊢∀ e⇐ 𝜎) if and only if (Γ ⊢∀ e⇐ 𝜎 ′)
Lastly, this theorem tells us that extra, redundant type annotations do not disrupt typability:

Theorem 7.6 (Synthesis implies checking). If Γ ⊢ e⇒ 𝜌 then Γ ⊢ e⇐ 𝜌 .

8 INTEGRATINGWITH TODAY’S GHC AND QUICK LOOK

We envision integrating our design into GHC, allowing Haskell programmers to use existential

types in their programs. Accordingly, we must consider how our work fits with GHC’s latest type-

inference algorithm, dubbed Quick Look [Serrano et al. 2020]. The structure behind our inference

algorithm—with heads applied to lists of arguments instead of nested applications—is based directly

on Quick Look, and it is straightforward to extend our work to be fully backward-compatible with

that design. Indeed, our extension is essentially orthogonal to the innovations of impredicative

type inference in the Quick Look algorithm.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

64:22 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Γ ⊢∀ e⇐ 𝜎 (Universal type checking)

GenImpredicative

𝜅 fresh 𝜌 ′ = 𝜌 [𝜅 /𝑏]
Γ, 𝑎 ⊢ e : 𝜌 ′ { Θ

𝜌 ′′ = Θ 𝜌 ′

dom (𝜃 ) = fiv (𝜌 ′′)
Γ, 𝑎 ⊢ e⇐ 𝜃 𝜌 ′′

Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌

Fig. 10. Allowing impredicative instantiation in the ⊢∀ judgment

It would take us too far afield from our primary goal—describing type inference for existential

types—to explain the details of Quick Look here. We thus build on the text already written by

Serrano et al. [2020]; readers uninterested in the details may safely skip the rest of this section.

Serrano et al. [2020] explains their algorithm progressively, by stating in their Figures 3 and 4 a

baseline system. That baseline also effectively serves as our baseline here. Then, in their Figure 5,

the authors add a few new premises to specific rules, along with judgments those premises refer to.

Given this modular presentation, we can adopt the same changes: their rule iarg is our rule IArg,

and their rule app-⇓ is our rule App. The only wrinkle in merging these systems is that their

presentation uses a notion of instantiation variable, which Serrano et al. write as 𝜅 . An instantiation

variable is allowed to unify with a polytype, in contrast to an ordinary unification variable, which

must unify with a monotype. Given that impredicative instantiation is not a primary goal of our

work, we choose not to use this approach in our main formal presentation, instead preferring

the more conventional idiom of using guessed 𝜏-types. However, in order to integrate inferred

existentials with Quick Look impredicativity, we must explicitly use instantiation variables in the

rule below.

Since we have a more elaborate notion of polytype, one rule needs adjustment in our system: the

rule implementing the Γ ⊢∀ e⇐ 𝜎 judgment, rule Gen. That rule skolemizes (makes fresh constants

out of) the variables universally quantified in 𝜎 and guesses 𝜏 to instantiate the existentially

quantified variables. In order to allow these instantiations to be impredicative, we must modify the

rule, as in Figure 10.

This rule follows broadly the pattern from rule Gen, but using instantiation variables 𝜅 instead

of guessing 𝜏 . The third premise invokes the Quick Look judgment ⊢ [Serrano et al. 2020, Figure 5]

to generate a substitution Θ. Such a substitution Θ maps instantiation variables 𝜅 to polytypes 𝜎 ;

by contrast, a substitution 𝜃 includes only monotypes 𝜏 in its codomain. The next two premises

of rule GenImpredicative apply the Θ substitution, and then use 𝜃 to eliminate any remaining

instantiation variables 𝜅: the fiv(𝜌 ′′) extracts all the f ree instantiation variables in 𝜌 ′′. Note that
the range of 𝜃 appears unconstrained here; the types in its range are guessed, just like the 𝜏 in

rule Gen.

With this one new rule—along with the changes evident in Figure 5 of Serrano et al.—our system

supports impredicative type inference, and is a conservative extension of their algorithm.

9 DISCUSSION

We have described how our inference algorithm allows users to program with existentials while

avoiding the need to thinking about packing and unpacking. Here, we review some subtleties that

arise as our approach encounters more practical settings.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

An Existential Crisis Resolved 64:23

9.1 No Declarative (Non-syntax-directed) System with Existentials

When we first set out to understand type inference with existentials better, our goal was to develop

a type system with existential types, unguided type inference (no additional annotation obligations

for the programmer), and principal types. Our assumption was that if this is possible with universal

quantification [Hindley 1969; Milner 1978], it should also be possible for existential quantification.

Unfortunately, it seems such a design is out of reach.

To see why, consider f b = if b then (1, 𝜆y → y + 1) else (True, 𝜆z → 1). We can see that f
can be assigned one of two different types:

(1) Bool → ∃a. (a, Int → Int)
(2) Bool → ∃a. (a, a→ Int)

Neither of these types is more general than the other, and neither seems likely to be ruled out by

straightforward syntactic restrictions (such as the Hindley-Milner type system’s requirement that

all universal quantification be in prenex form).

One possible approach to inference for a definition like f is to use an anti-unification [Pfenning

1991] algorithm to relate the types of (1, 𝜆y → y + 1) and (True, 𝜆z → 1): infer the former to have

type (Int, Int → Int) and the latter to have type (Bool, 𝛼 → Int) for some unknown type 𝛼 . The

goal then is to find some type 𝜏 such that 𝜏 can instantiate to either of these two types: this is

anti-unification. The problem is, in this case, 𝛼 : we get different results depending on whether 𝛼

becomes Int or Bool.
We might imagine a way of choosing between the two hypothetical types for f , above, but

any such restriction would break the desired symmetry and elegance of a declarative system that

allows arbitrary generalization and specialization. Instead, we settle for the practical, predictable

bidirectional algorithm presented in this paper, leaving the search for a more declarative approach

as an open problem—one we think unlikely to have a satisfying solution.

9.2 Class Constraints on Existentials

The algorithm we present in this paper works with a typing context storing the types of bound

variables. In full Haskell, however, we also have a set of constraint assumptions, and accepting

some expressions requires proving certain constraints. A type system with these assumptions

and obligations is often called a qualified type system [Jones 1992]. Our extension to support both

universal and existential qualified types is in Figure 11.

This extension introduces type classes C and constraints Q. Constraints are applied type classes

(like Show Int), and perhaps others; the details are immaterial. Instead, we refer to an abstract

logical entailment relation⊩, which relates assumptions and the constraints they entail. Universally

quantified types 𝜎 can now require proving a constraint: to use e : Q ⇒ 𝜎 , the constraint Q must

hold. Existentially quantified types 𝜖 can now provide the proof of a constraint: the expression

e : Q ∧ 𝜖 contains evidence that Q holds. Assumed constraints appear in contexts Γ.15

The surprising feature here is that we have a new form of assumption, ⌊e : 𝜖⌋. This assumption

is allowed only when 𝜖 has the form Q ∧ 𝜖 ′; the assumed constraint is Q. However, by including

the expression e that proves Q in the context, we remember how to compute Q when it is required.

9.2.1 Static Semantics. Examining the typing rules, we see rule GenQualified assumes Q1 as

a given (following the usual treatment of givens in qualified type systems) and also assumes an

arbitrary list of projections ⌊e : 𝜖⌋. This arbitrary assumption is quite like how rule Gen assumes

15
Other presentations of qualified type systems frequently have a judgment that looks like 𝑃 | Γ ⊢ 𝑒 : 𝜌 , or similar,

with a separate set of logical assumptions 𝑃 . Because our assumptions may include expressions, we must mix the logical

assumptions with variable assumptions right in the same context Γ.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

64:24 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

C ::= . . . type class

Q ::= C 𝜏 | . . . constraint

𝜎 ::= 𝜖 | ∀ a.𝜎 | Q ⇒ 𝜎 universally quantified type

𝜖 ::= 𝜌 | ∃ b.𝜖 | Q ∧ 𝜖 existentially quantified type

Γ ::= ∅ | Γ, a | Γ, x:𝜎 | Γ,Q | Γ, ⌊e : 𝜖⌋ typing context

Γ ⊩ Q logical entailment

GenQualified

Γ′ = Γ, 𝑎,Q1, ⌊e : Q ∧ 𝜖⌋
Γ′ ⊢∀ e⇐ Q ∧ 𝜖 e ∈ e0

Γ′ ⊢ e0 ⇐ 𝜌 [𝜏 /𝑏]
Γ′ ⊩ Q2 [𝜏 /𝑏]

Γ ⊢∀ e0 ⇐ (∀𝑎.Q1 ⇒ ∃𝑏.Q2 ∧ 𝜌)

IGiven

Γ ⊢inst e : 𝜖 ; 𝜋 { 𝜎 ; 𝜌r
⌊e : Q ∧ 𝜖⌋ ∈ Γ

Γ ⊢inst e : Q ∧ 𝜖 ; 𝜋 { 𝜎 ; 𝜌r

IWanted

Γ ⊢inst e : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r
Γ ⊩ Q

Γ ⊢inst e : Q ⇒ 𝜎 ; 𝜋 { 𝜎 ; 𝜌r

Fig. 11. Type system extension to support existentially packed class constraints

types 𝜏 to replace the existential variables 𝑏. To prevent the type system from working in an

unbounded search space for assumptions to make, the expressions e must be sub-expressions of

our checked expression e0.

The instantiation judgment ⊢inst must also accommodate constraints. When, in rule IGiven, it

comes across an expression whose type includes a packed assumption Q ∧ 𝜖 , it checks to make sure

that assumptionwas included in Γ. The design here requiring an arbitrary guess of assumptions, only

to validate the guess later, is merely because our presentation is somewhat declarative. By contrast,

an implementation would work by emitting constraints and solving them (that is, computing ⊩)
later [Pottier and Rémy 2005]; when the constraint-generation pass encounters an expression of

type Q ∧ 𝜖 , it simply emits the constraint as a given. Rule IWanted is a straightforward encoding

of the usual behavior of qualified types, where the usage of an expression of type Q ⇒ 𝜎 requires

proving Q.

9.2.2 Dynamic Semantics. An interesting new challenge with packed class constraints is that class

constraints are not erasable. In practice, a function pretty of type Pretty a ⇒ a → String (§2.3)

takes two runtime arguments: a dictionary [Hall et al. 1996] containing implementations of the

methods in Pretty , as well as the actual, visible argument of type a. When this dictionary comes

from an existential projection, the expression producing the existential will have to be evaluated.

For example, suppose we have mk :: Bool → ∃a. Pretty a ∧ a and call pretty (mk True). Calling
pretty requires passing the dictionary giving the the implementation of the function at the specific

type pretty is instantiated at (⌊mk True :: ∃a. Pretty a ∧ a⌋, in this case). Getting this dictionary

requires evaluating mk True. Naïvely, this means mk True would be evaluated twice. This makes

some sense if we think of Q ∧ 𝜖 as the type of pairs of a dictionary for Q and the inhabitant of 𝜖 : the

naïve interpretation of pretty (mk True) thus is like calling pretty (fst (mk True)) (snd (mk True)).
We do not address how to do better here, as standard optimization techniques can apply to improve

the potential repeated work. Once again, purity works to our advantage here, in that we can be

assured that commoning up the calls to mk True does not introduce (or eliminate) effects.

9.3 Relevance and Existentials

One of the primary motivations for this work is to set the stage for an eventual connection between

Liquid Haskell [Vazou et al. 2014] and the rest of Haskell’s type system. A Liquid Haskell refinement

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

An Existential Crisis Resolved 64:25

type is exemplified by {v :: Int | v ⩾ 0}; any element of such a type is guaranteed to be non-

negative. Yet what would it mean to have a function return such a type? To be concrete, let us

imaginemk ::Bool → {v :: Int | v ⩾ 0}. This function would return a value v of type Int , along with
a proof that v ⩾ 0: this is a dependent pair, or an existential package. Thus, we can rephrase the

type of mk to be Bool → ∃(v :: Int). Proof (v ⩾ 0), where Proof q encodes a proof of the logical

property q.
However, our new form of existential is different than the others considered in this paper. Here,

the relevant part is the first component, not the second. That is, we want to be able to project out

v :: Int at runtime, discarding the compile-time proof that v ⩾ 0.

The core language presented in this paper cannot, without embellishment, support relevant

first components of existentials. In other words, ⌊e : 𝜖⌋ is always a compile-time type, never a

runtime term. Nevertheless, existing approaches to deal with relevance will work in this new

setting. Haskell’s ∀ construct universally quantifies over an irrelevant type. Yet, work on dependent

Haskell [Eisenberg 2016; Gundry 2013; Weirich et al. 2017] shows how we can make a similar,

relevant construct. Similar approaches could work in a core language modeled on FX. Indeed,
other dependently typed languages, such as Coq, Agda, and Idris support existential packages with

relevant dependent components.

The big step our current work brings to this story is type inference. Whether relevant or not, we

would still want existential packages to be packed and unpacked without explicit user direction,

and we would still want type inference to have the properties of the algorithm presented in this

paper. In effect, the choice of relevance of the dependent component is orthogonal to the concerns

in this paper. We are thus confident that our approach would work in a setting with relevant types.

10 RELATEDWORK

There is a long and rich body of literature informing our knowledge of existential types. We review

some of the more prominent work here.

History. Existential types were present from the beginning in the design of polymorphic pro-

gramming languages, present in Girard’s System F [Girard 1972] and independently discovered

by Reynolds [1974], though in a less expressive form. Mitchell and Plotkin [1988] recognized the

ability of existential types to model abstract datatypes and remarked on their connection with the

Σ-types of Martin-Löf type theory [Martin-Löf 1975]. They proposed an elimination form, called

abstype, that is equivalent to the now standard unpack.
Cardelli and Leroy [1990] compared Mitchell and Plotkin’s unpack based approach to various

calculi with projection-based existentials. Their “calculus with a dot notation” includes the ability

for the type language to project the type component from term variables of an existential type. At

the end of the report (Section 4), they generalize to allow arbitrary expressions in projections. It is

this language that is most similar to our core language. They also note a number of examples that

are expressible only in this language.

Integration with type inference. Full type checking and type inference for domain-free System F

with existential types is known to be undecidable [Nakazawa and Tatsuta 2009; Nakazawa et al.

2008]. As a result, several language designers have used explicit forms such as datatype declarations

or type annotations to extend their languages with existential types.

The datatype-based version of existentials found in GHC was first suggested by Perry [1991]

and implemented in Hope+. It was formalized by Läufer and Odersky [1994] and implemented in

the Caml Light compiler for ML, along with the Haskell B compiler [Augustsson 1994].

The Utrecht Haskell Compiler (UHC) also supports a version of existential type [Dijkstra 2005],

in a form that does not require the explicit connection to datatypes found in GHC. As in this work,

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

64:26 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

values of existential types can be opened in place, without the use of an unpack term. However,

unlike here, UHC generates a fresh type variable for the abstracted type with each use of open. As
a result, UHC does not need the form of dependent types that we propose, but also cannot express

some of the examples allowed by our system (§3.3).

Leijen [2006] describes an extension of MLF [Le Botlan and Rémy 2003] with first-class existential

types. Like this work, programmers never needed to add explicit pack or unpack expressions.

However, because the type system was based on MLF, polymorphic types include instantiation

constraints and the type-inference algorithm is very different from that used by GHC. In contrast,

our work requires only a small extension of GHC’s most recent implementation of first-class

polymorphism. Furthermore, Leijen does not describe a translation from his source language to an

explicitly typed core language; a necessary implementation step for GHC.

Dunfield and Krishnaswami [2019] extend a bidirectional type system with indexes in existential

types in order to support GADTs. As in this work, the introduction and elimination of existentials

is implicit and determined by type annotations. Existentials are introduced via subsumption and

eliminated via pattern matching. As a result, this type system has the same scoping limitations as

one based on unpack.
In other contexts, if the domain of types that existentials are allowed to quantify over is restricted,

more aggressive type inference is possible. For example, Tate et al. [2008] restrict existentials to

hide only class types and develop a type-inference framework for a small object-oriented typed

assembly language.

Module systems. This paper also relates to work on ML-style module systems. We do not summa-

rize that field here but mention some papers that are particularly inspirational or relevant.

MacQueen [1986] noted the deficiencies of Mitchell and Plotkin [1988] with respect to expressing

modular structure. This work proposed the original form of the ML module system as a dependent

type system based on strong Σ-types. As in our system,modules support projections of the abstracted

type and values. However, unlike this work, the ML module language supports additional type

system features: a phase separation between the compile-time and runtime parts of the language,

a treatment of generativity which determines when module expressions should and should not

define new types, etc, as described in Harper and Pierce [2005]. We do not intend to use this type

system to express modular structure.

F-ing modules [Rossberg et al. 2014] present a formalization of ML modules using existential

types and a translation of a module language into System 𝐹𝜔 augmented with pack and unpack.

Our approach is similar to theirs, in that we also use a translation of a surface language into our

FX. However, because the ML module system includes a phase separation, our concerns about

strictness do not apply in that setting. As a result they can target the non-dependent language 𝐹𝜔
and use unpack as their elimination form. Rossberg [2015] extends the source language to a more

uniform design while still retaining the translation to a non-dependent core calculus.

Montagu and Rémy [2009] present an extension of System F to compute open existential types.

They introduce the idea of decomposing the usual explicit pack and unpack constructs of System F,

and we were inspired by those ideas to design the type system of our implicit surface language with

opened existentials. Interestingly, for a long time, it was unknown whether full abstraction could

be achieved with strong existentials. Crary [2017] plugged this hole, proving Reynold’s abstraction

theorem for a module calculus based on strong Σ-types.

11 CONCLUSION

By leveraging strong existential types, we have presented a type-inference algorithm that can infer

introduction and elimination sites for existential packages. Users can freely create and consume

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

An Existential Crisis Resolved 64:27

existentials with no term-level annotations. The type annotation burden is small, and it dovetails

with programmers’ current expectations around bidirectional type inference. The algorithm we

present is designed to integrate well with GHC/Haskell’s state-of-the-art approach to type inference,

the Quick Look algorithm [Serrano et al. 2020].

In order to prove our approach sound, we include an elaboration into a type-safe core language,

inspired by Cardelli and Leroy [1990] and supporting the usual progress and preservation proofs.

This core language is a small extension on System FC, the current core language implemented

within GHC, and thus is suitable for implementation.

Beyond just soundness, we prove that inlining a let-binding preserves types, a non-trivial

property in a type system with inferred existential types. We also prove that our type-inference

algorithm is a conservative extension of a basic Hindley-Milner type system.

We believe and hope that our forthcoming implementation within GHC—in active development

at the time of writing—will enable programmers to verify more aspects of their programs, even

when that verification requires the use of existential types. We also hope that this new feature will

provide a way forward to integrate the user-facing success of Liquid Haskell with GHC’s internal

language and optimizer.

ACKNOWLEDGMENTS

The authors thank Neel Krishnaswami and Simon Peyton Jones for their collaboration and review,

along with our anonymous reviewers. This material is based upon work supported by the National

Science Foundation under Grant No. 1703835 and Grant No. 1704041. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

REFERENCES

Lennart Augustsson. 1994. Haskell B. user’s manual. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.5800&

rep=rep1&type=pdf

Lennart Augustsson and Magnus Carlsson. 1999. An exercise in dependent types: A well-typed interpreter. (1999). http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.2895&rep=rep1&type=pdf Unpublished manuscript.

Franz Baader and Tobias Nipkow. 1998. Term Rewriting and All That. Cambridge University Press.

Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking Stability by being Lazy and Shallow: Lazy and shallow instantiation

is user friendly. In ACM SIGPLAN Haskell Symposium.

Luca Cardelli and Xavier Leroy. 1990. Abstract types and the dot notation. In IFIP TC2 working conference on programming

concepts and methods. North-Holland, 479–504.

Dominique Clément, Thierry Despeyroux, Gilles Kahn, and Joëlle Despeyroux. 1986. A Simple Applicative Language:

Mini-ML. In Conference on LISP and Functional Programming (Cambridge, Massachusetts, USA) (LFP ’86). ACM.

Karl Crary. 2017. Modules, Abstraction, and Parametric Polymorphism. In Proceedings of the 44th ACM SIGPLAN Symposium

on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery, New York,

NY, USA, 100–113. https://doi.org/10.1145/3009837.3009892

Luis Damas and Robin Milner. 1982. Principal Type-schemes for Functional Programs. In Symposium on Principles of

Programming Languages (Albuquerque, New Mexico) (POPL ’82). ACM.

Atze Dijkstra. 2005. Stepping through Haskell. Ph.D. Dissertation. Universiteit Utrecht.

Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and Easy Bidirectional Typechecking for Higher-rank

Polymorphism. In International Conference on Functional Programming (ICFP ’13). ACM.

Jana Dunfield and Neelakantan R. Krishnaswami. 2019. Sound and Complete Bidirectional Typechecking for Higher-Rank

Polymorphism with Existentials and Indexed Types. Proc. ACM Program. Lang. 3, POPL, Article 9 (Jan. 2019), 28 pages.

https://doi.org/10.1145/3290322

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. Ph.D. Dissertation. University of Pennsylvania.

Richard A. Eisenberg. 2020. Stitch: The Sound Type-Indexed Type Checker (Functional Pearl). In Proceedings of the 13th

ACM SIGPLAN International Symposium on Haskell (Virtual Event, USA) (Haskell 2020). Association for Computing

Machinery, New York, NY, USA, 39–53. https://doi.org/10.1145/3406088.3409015

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.5800&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.5800&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.2895&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.2895&rep=rep1&type=pdf
https://doi.org/10.1145/3009837.3009892
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3406088.3409015


1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

64:28 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Richard A. Eisenberg, Joachim Breitner, and Simon Peyton Jones. 2018. Type Variables in Patterns. In Proceedings of the

11th ACM SIGPLAN International Symposium on Haskell (St. Louis, MO, USA) (Haskell 2018). Association for Computing

Machinery, New York, NY, USA, 94–105. https://doi.org/10.1145/3242744.3242753

Richard A. Eisenberg and Stephanie Weirich. 2012. Dependently Typed Programming with Singletons. In ACM SIGPLAN

Haskell Symposium.

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D.

Dissertation. Université Paris 7.

Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. 1996. Type Classes in Haskell. ACM Trans.

Program. Lang. Syst. 18, 2 (March 1996).

Robert Harper and Benjamin C. Pierce. 2005. Design Considerations for ML-Style Module Systems. In Advanced Topics in

Types and Programming Languages, Benjamin C. Pierce (Ed.). The MIT Press, 293–346.

J. Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969).

William Alvin Howard. 1969. The Formulae-as-types Notion of Construction. (1969). https://www.dcc.fc.up.pt/~acm/

howard2.pdf Dedicated to H. B. Curry on the occasion of his 80th birthday.

Mark P. Jones. 1992. A Theory of Qualified Types. In Proceedings of the 4th European Symposium on Programming (ESOP

’92). Springer-Verlag, Berlin, Heidelberg, 287–306.

Konstantin Läufer. 1996. Type classes with existential types. Journal of Functional Programming 6, 3 (1996), 485–518.

https://doi.org/10.1017/S0956796800001817

Konstantin Läufer and Martin Odersky. 1994. Polymorphic type inference and abstract data types. ACM Transactions on

Programming Languages and Systems (TOPLAS) 16, 5 (1994), 1411–1430.

Didier Le Botlan and Didier Rémy. 2003. ML
F
: Raising ML to the power of System F. In International Conference on Functional

Programming. ACM.

Daan Leijen. 2006. First-class polymorphism with existential types. (2006). Unpublished.

David B MacQueen. 1986. Using dependent types to express modular structure. In Proceedings of the 13th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages. 277–286.

PerMartin-Löf. 1975. An intuitionistic theory of types: Predicative part. In Studies in Logic and the Foundations of Mathematics.

Vol. 80. Elsevier, 73–118.

Conor Thomas McBride. 2014. How to Keep Your Neighbours in Order. In Proceedings of the 19th ACM SIGPLAN International

Conference on Functional Programming (Gothenburg, Sweden) (ICFP ’14). ACM.

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17 (1978).

John C Mitchell and Gordon D Plotkin. 1988. Abstract types have existential type. ACM Transactions on Programming

Languages and Systems (TOPLAS) 10, 3 (1988), 470–502.

Stefan Monnier and David Haguenauer. 2010. Singleton types here, singleton types there, singleton types everywhere. In

Programming languages meets program verification (PLPV ’10). ACM.

Benoît Montagu and Didier Rémy. 2009. Modeling Abstract Types in Modules with Open Existential Types. In Proceedings of

the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah, GA, USA) (POPL

’09). Association for Computing Machinery, New York, NY, USA, 354–365. https://doi.org/10.1145/1480881.1480926

Koji Nakazawa andMakoto Tatsuta. 2009. Type Checking and Inference for Polymorphic and Existential Types. In Proceedings

of the Fifteenth Australasian Symposium on Computing: The Australasian Theory - Volume 94 (Wellington, New Zealand)

(CATS ’09). Australian Computer Society, Inc., AUS, 63–72.

Koji Nakazawa, Makoto Tatsuta, Yukiyoshi Kameyama, and Hiroshi Nakano. 2008. Undecidability of Type-Checking in

Domain-Free Typed Lambda-Calculi with Existence. In Computer Science Logic, Michael Kaminski and Simone Martini

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 478–492.

Martin Odersky and Konstantin Läufer. 1996. Putting Type Annotations to Work. In Symposium on Principles of Programming

Languages (POPL ’96). ACM.

Nigel Perry. 1991. The implementation of practical functional programming languages. Ph.D. Dissertation. Imperial College

of Science, Technology and Medicine, University of London.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-

rank types. Journal of Functional Programming 17, 1 (Jan. 2007).

F. Pfenning. 1991. Unification and anti-unification in the calculus of constructions. In Proceedings 1991 Sixth Annual IEEE Sym-

posium on Logic in Computer Science. IEEE Computer Society, Los Alamitos, CA, USA, 74,75,76,77,78,79,80,81,82,83,84,85.

https://doi.org/10.1109/LICS.1991.151632

Frank Pfenning and Peter Lee. 1989. LEAP: A language with eval and polymorphism. In TAPSOFT ’89, J. Díaz and F. Orejas

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 345–359.

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.

https://doi.org/10.1145/3242744.3242753
https://www.dcc.fc.up.pt/~acm/howard2.pdf
https://www.dcc.fc.up.pt/~acm/howard2.pdf
https://doi.org/10.1017/S0956796800001817
https://doi.org/10.1145/1480881.1480926
https://doi.org/10.1109/LICS.1991.151632


1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

An Existential Crisis Resolved 64:29

François Pottier and Didier Rémy. 2005. The Essence of ML Type Inference. In Advanced Topics in Types and Programming

Languages, Benjamin C. Pierce (Ed.). The MIT Press, 387–489.

John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium, B. Robinet (Ed.). Lecture Notes in

Computer Science, Vol. 19. Springer Berlin Heidelberg, 408–425.

Andreas Rossberg. 2015. 1ML – Core and Modules United (F-Ing First-Class Modules). In Proceedings of the 20th ACM

SIGPLAN International Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for

Computing Machinery, New York, NY, USA, 35–47. https://doi.org/10.1145/2784731.2784738

Andreas Rossberg, Claudio Russo, and Derek Dreyer. 2014. F-ing modules. Journal of functional programming 24, 5 (2014),

529–607.

Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. 2020. A Quick Look at Impredicativity.

Proc. ACM Program. Lang. 4, ICFP, Article 89 (Aug. 2020), 29 pages. https://doi.org/10.1145/3408971

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. 2007. System F with type equality

coercions. In Types in languages design and implementation (Nice, Nice, France) (TLDI ’07). ACM.

Ross Tate, Juan Chen, and Chris Hawblitzel. 2008. A Flexible Framework for Type Inference with Existential Quantification.

Technical Report MSR-TR-2008-184. https://www.microsoft.com/en-us/research/publication/a-flexible-framework-for-

type-inference-with-existential-quantification/

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton Jones. 2014. Refinement Types for Haskell.

In International Conference on Functional Programming (Gothenburg, Sweden) (ICFP ’14). ACM.

Stephanie Weirich. 2018. Dependent Types in Haskell. Haskell eXchange keynote.

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A. Eisenberg. 2017. A Specification

for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017), 29 pages. https://doi.org/10.

1145/3110275

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive datatype constructors. In Principles of Programming

Languages (New Orleans, Louisiana, USA) (POPL ’03). ACM.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.

https://doi.org/10.1145/2784731.2784738
https://doi.org/10.1145/3408971
https://www.microsoft.com/en-us/research/publication/a-flexible-framework-for-type-inference-with-existential-quantification/
https://www.microsoft.com/en-us/research/publication/a-flexible-framework-for-type-inference-with-existential-quantification/
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275


1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

64:30 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

A ELABORATION RULES

We first extend the FX grammar to include arguments:

p ::= e | t argument

Γ ⊢∀ e⇐ 𝜎 ⇒ e (Elaboration for polymorphic expressions)

Elab-Gen

Γ, 𝑎 ⊢ e⇐ 𝜌 [𝜏 /𝑏] ⇒ e

𝜏 ⇒ t 𝜌 ⇒ r

fv(𝜏) ⊆ dom(Γ, 𝑎)
Γ ⊢∀ e⇐ ∀𝑎.∃𝑏.𝜌 ⇒ Λ𝑎.pack t, e as∃𝑏.r

Γ ⊢ e⇒ 𝜌 ⇒ e Γ ⊢ e⇐ 𝜌 ⇒ e (Elaboration for expressions)

Elab-App

Γ ⊢ℎ h⇒ 𝜎 ⇒ h

Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢ h 𝜋 ⇔ 𝜌r ⇒ er

Elab-iAbs

𝑎 fresh
Γ, x:𝜏 ⊢ e⇒ 𝜌 ⇒ e

fv(𝜏) ⊆ dom(Γ)
𝜌 ′ = 𝜌 [𝑎 / ⌊𝜌⌋

x
] 𝜏 ⇒ t

𝜌 ⇒ r 𝜌 ′ ⇒ r
′

Γ ⊢ 𝜆x .e⇒ 𝜏 → ∃𝑎.𝜌 ′ ⇒ 𝜆x:t.pack ⌊r⌋
x
, e as∃𝑎.r′

Elab-cAbs

Γ, x:𝜎1 ⊢∀ e⇐ 𝜎2 ⇒ e

fv(𝜎1) ⊆ dom(Γ)
𝜎1 ⇒ s1

Γ ⊢ 𝜆x .e⇐ 𝜎1 → 𝜎2 ⇒ 𝜆x:s1 .e

Elab-LetCore

Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

𝑎 = fv(𝜌1)\dom(Γ)
Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇔ 𝜌2 ⇒ e2

Γ ⊢ let x = e1 in e2 ⇔ 𝜌2 [Λ𝑎.e1 / x] ⇒ let x = Λ𝑎.e1 in e2

Γ ⊢ℎ h⇒ 𝜎 ⇒ h (Elaboration for heads)

Elab-Var

x:𝜎 ∈ Γ
Γ ⊢ℎ x ⇒ 𝜎 ⇒ x

Elab-Ann

Γ ⊢∀ e⇐ 𝜎 ⇒ e

fv(𝜎) ⊆ dom(Γ)
Γ ⊢ℎ (e :: 𝜎) ⇒ 𝜎 ⇒ e

Elab-Infer

Γ ⊢ e⇒ 𝜌 ⇒ e

Γ ⊢ℎ e⇒ 𝜌 ⇒ e

Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er (Elaboration for instantiation)

Elab-ITyArg

𝜎 ′ ⇒ s
′

Γ ⊢inst e 𝜎 ′ : 𝜎 [𝜎 ′ / a] ⇒ e s
′

; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∀ a.𝜎 ⇒ e ; 𝜎 ′, 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IArg

Γ ⊢∀ e′⇐ 𝜎1 ⇒ e
′

Γ ⊢inst e e′ : 𝜎2 ⇒ e e
′

; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : (𝜎1 → 𝜎2) ⇒ e ; e
′, 𝜋 { 𝜎1, 𝜎 ; 𝜌r ⇒ er

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

An Existential Crisis Resolved 64:31

Elab-IAll

𝜏 ⇒ t 𝜋 ≠ 𝜎 ′, 𝜋 ′

Γ ⊢inst e : 𝜎 [𝜏 / a] ⇒ e t ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∀ a.𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IExistCore

Γ ⊢inst e : 𝜖 [⌊e⌋ / a] ⇒ open e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Γ ⊢inst e : ∃ a.𝜖 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er

Elab-IResult

Γ ⊢inst e : 𝜌r ⇒ er ; [] { [] ; 𝜌r ⇒ er

𝜎 ⇒ s (Elaboration for types)

ElabT-ForAll

𝜎 ⇒ s

∀ a.𝜎 ⇒ ∀ a.s

ElabT-Exists

𝜖 ⇒ t

∃ a.𝜖 ⇒ ∃ a.t

ElabT-Arrow

𝜎1 ⇒ s1 𝜎2 ⇒ s2

𝜎1 → 𝜎2 ⇒ s1 → s2

ElabT-Var

a ⇒ a

ElabT-ProjCore

⌊e⌋ ⇒ ⌊e⌋

Γ ⇒ G (Elaboration for contexts)

ElabC-Nil

∅⇒ ∅

ElabC-TyVar

Γ ⇒ G

Γ, a ⇒ G, a

ElabC-Var

Γ ⇒ G 𝜎 ⇒ s

Γ, x:𝜎 ⇒ G, x : s

In a small abuse of notation, we write (for example, in rule Elab-iAbs) a list of types in a pack
construct to denote nested packs. Formally, for e of type r[t /𝑎], with t = t1 ... tn and 𝑎 = a1 ... an,

the construction is defined recursively by:

pack t1 ... tn, e as∃ a1 ... an .r = pack t1, (pack t2 ... tn, e as∃ a2 ... an .r[t1 / a1]) as∃ a1 a2 ... an .r

Define erasure on X terms by the following equations:

|n| = n

|x | = x

|e :: 𝜎 | = |e |
|h 𝜋, e | = |h 𝜋 | |e |
|h 𝜋, 𝜎 | = |h 𝜋 |
|𝜆x .e | = 𝜆x .|e |

|let x = e1 in e2 | = let x = |e1 | in |e2 |

Theorem A.1 (Elaboration erasure (Theorem 7.2)).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then |e | = |e|.
(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then |e | = |e|.
(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then |e | = |e|.
(4) If Γ ⊢ℎ h⇒ 𝜎 ⇒ h, then |h| = |h|.
(5) If Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ e0 and |e | = |e|, then |e 𝜋 | = |e0 |.

Proof. By straightforward induction on the elaboration judgments. □

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

64:32 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

B PROOFS ABOUT OUR SURFACE LANGUAGE, X

Theorem B.1 (Soundness).

(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then G ⊢ e : s, where Γ ⇒ G and 𝜎 ⇒ s.

(2) If Γ ⊢ e⇒ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then G ⊢ e : r, where Γ ⇒ G and 𝜌 ⇒ r.

(4) If Γ ⊢ℎ h⇒ 𝜎 ⇒ h, then G ⊢ h : s, where Γ ⇒ G and 𝜎 ⇒ s.

(5) If Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er and G ⊢ h : s, then G ⊢ er : rr where Γ ⇒ G, 𝜎 ⇒ s

and 𝜌r ⇒ rr .

Proof. By (mutual) structural induction on the typing rule. The full set of rules can be found in

Annex A.

Rule Elab-Gen From the premise: Γ, 𝑎 ⊢ e ⇐ 𝜌 [𝜏 /𝑏] ⇒ e, where 𝜏 ⇒ t and 𝜌 ⇒ r. By

induction hypothesis, G, 𝑎 ⊢ e : r[t /𝑏]. By successive applications of rule CE-Pack we get

G, 𝑎 ⊢ pack t, e as∃𝑏.r : ∃𝑏.r. Then by successive applications of rule CE-Tabs we get the

result: G ⊢ Λ𝑎.pack t, e as∃𝑏.r : ∀𝑎.∃𝑏.r.
Rule Elab-App Inference and synthesis are treated at the same time by mutual induction. By

induction hypothesis, G ⊢ h : s where 𝜎 ⇒ s. Then by induction hypothesis (case (5)), we

obtain G ⊢ er : rr .

Rule Elab-iAbs By induction hypothesis, G, x : t ⊢ e : r. By applications of rule CE-Pack

we obtain G, x : t ⊢ pack ⌊r⌋
x
, e as∃𝑎.r′ : ∃𝑎.r′ where r

′ = r[𝑎 / ⌊r⌋
x
]. We conclude by

applying rule CE-Abs where the premise x ∉ fv(∃𝑎.r′) is verified by construction of r
′
and

definition of ⌊r⌋
x
.

Rule Elab-cAbs By induction hypothesis and rule CE-App.

Rule Elab-LetCore Inference and synthesis are treated at the same time. By induction hy-

pothesis and rule rule CE-Let.

Rule Elab-Var Since x:𝜎 ∈ Γ, we have x : s ∈ G and we conclude by rule CE-Var.

Rule Elab-Ann By induction hypothesis.

Rule Elab-Infer By induction hypothesis.

We see the instantiation judgment for elaboration as a bottom-up computation initialized, in

rule Elab-App, by a head h such that G ⊢ h : s. Hence we just prove that going "up" in the

derivation tree maintains the invariant that the first core expression e is well-typed (i.e. that

Γ ⊢inst e : 𝜎 ⇒ e ; 𝜋 { 𝜎 ; 𝜌r ⇒ er implies G ⊢ e : s where 𝜎 ⇒ s).

Rule Elab-ITyArg Assuming that G ⊢ e : ∀ a.s, by rule CE-Tapp: G ⊢ e s
′

: s[s′ / a].
Rule Elab-IArg Assuming that G ⊢ e : s1 → s2 and Γ ⊢∀ e

′ ⇐ 𝜎1 ⇒ e
′
. By induction

hypothesis, G ⊢ e
′

: s1 where 𝜎1 ⇒ s1. By rule CE-App we obtain G ⊢ e e
′

: s2.

Rule Elab-IAll Assuming that G ⊢ e : ∀ a.s. By rule CE-Tapp, we obtain G ⊢ e t : s[t / a].
Rule Elab-IExistCore Assuming that G ⊢ e : ∃ a.t where 𝜖 ⇒ t. By rule CE-Open: G ⊢

open e : t[⌊e⌋ / a].
Finally, at the top of the derivation tree, rule Elab-IResult ensures that this invariant translates to

the result of the computation, that is, to the second core expression er and the result type 𝜌r such

that G ⊢ er : rr with 𝜌r ⇒ rr . □

Theorem B.2 (Conservative extension of Clément et al. [1986]). If e has no type arguments

or type annotations, and Γ, e, 𝜏 , 𝜎 contain no existentials, then:

(1) (Γ ⊢𝐻𝑀 e : 𝜏) implies (Γ ⊢ e⇒ 𝜏)
(2) (Γ ⊢𝐻𝑀 e : 𝜎) implies

(
Γ ⊢∀ e⇐ 𝜎

)
Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

An Existential Crisis Resolved 64:33

where ⊢𝐻𝑀 denotes typing in the Hindley-Milner type system, as described by Clément et al. [1986,

Figure 3].

Proof. Proceed by induction on the length of the derivation for Γ ⊢𝐻𝑀 e : 𝜏 and case analysis

on e.

e = x: The rule used is C_Var. From its premise we get x:∀𝑎.𝜏 ′ ∈ Γ, with 𝜏 = 𝜏 ′[𝜏 /𝑎]. In our

type system, we can type Γ ⊢ℎ x ⇒ ∀𝑎.𝜏 with H-Var. Then the instantiation judgment gives

us Γ ⊢inst x : ∀𝑎.𝜏 ′ ; [] { [] ; 𝜏 as the IAll rule will be used to instantiate ∀𝑎.𝜏 with 𝜏 . Finally
we apply App to obtain Γ ⊢ x ⇒ 𝜏 .

e = 𝜆x .e′: Since there are no existentials in 𝜏 = 𝜏1 → 𝜏2, hence in 𝜏2, the iAbs rule is the same

as the usual C_Abs rule, therefore we conclude by induction.

let x = e1 in e2: Without existentials, the Let rule is the same as applying the C_Gen and C_Let

rules at the same time.

e = h e1 ... en: The type of ℎ is 𝜏1 → ... → 𝜏n → 𝜏 . By applying the induction hypothesis on the

successive premises obtained by inversing the C_App rules used to type e, we get Γ ⊢ ei ⇒ 𝜏i
for all 𝑖 , hence by Theorem 7.6: Γ ⊢ ei ⇐ 𝜏i. The instantiation judgment, given as input

h : 𝜏1 → ... → 𝜏n → 𝜏 and the list of arguments e1 ... en, outputs the list of types 𝜏1 ... 𝜏n and

the return type 𝜏 . Hence we can apply App.

□

Theorem B.3 (Synthesis implies checking). If Γ ⊢ e⇒ 𝜌 then Γ ⊢ e⇐ 𝜌 .

Proof. Proceed by induction on the typing judgment Γ ⊢ e⇒ 𝜌 .

Rule iAbs: By inversion and applying the induction hypothesis, we get Γ, x:𝜏 ⊢ e⇐ 𝜌 . Hence

by rule Gen, Γ, x:𝜏 ⊢∀ e⇐ ∃𝑎.𝜌 ′ and we conclude by rule cAbs.

Rule Let and rule App: Same rules for synthesis and checking.

□

Theorem B.4 (Order of Quantification does not matter). Let 𝜌 ′ (resp. 𝜎 ′) be two types that
differ from 𝜌 (resp. 𝜎) only by the ordering of quantified type variables in their (eventual) existential

types. Then:

(1) (Γ ⊢ e⇒ 𝜌) if and only if (Γ ⊢ e⇒ 𝜌 ′)
(2) (Γ ⊢∀ e⇐ 𝜎) if and only if (Γ ⊢∀ e⇐ 𝜎 ′)

Proof. In inference mode, the only rule that packs existentials is rule iAbs. This rule packs all

the possible type variables at the same time, hence we see that their ordering does not matter. It is

trivial therefore to choose one ordering or the other, to go from type 𝜌 to type 𝜌 ′.
In checking mode, rule Gen also does several packs at once, whose ordering does not matter. □

Lemma B.5. If 𝑎 ∉ dom (Γ)
(1) If Γ ⊢∀ e⇐ 𝜎 then 𝑎 ∉ fv (e).
(2) If Γ ⊢ e⇒ 𝜌 then 𝑎 ∉ fv (e).
(3) If Γ ⊢ℎ h⇒ 𝜎 then 𝑎 ∉ fv (h ).

Proof. By structural induction on the derivation.

Rule Gen: By inversion, Γ, 𝑎′ ⊢ e⇐ 𝜌 [𝜏 /𝑏]. By 𝛼-equivalence, it is permissible to choose the

𝑎′ fresh, such that 𝑎 and 𝑎′ do not intersect. Hence, we have 𝑎 ∉ dom (Γ, 𝑎′) and by induction
hypothesis 𝑎 ∉ fv (e).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

64:34 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Rule App: By induction hypothesis, we have 𝑎 ∉ fv (h ) as well as 𝑎 ∉ fv (ei) for all 𝑖 . Since
Γ ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r , we also know thanks to the scoping rule of rule ITyArg that for

every 𝜎 ′ ∈ 𝜋 , fv(𝜎 ′) ⊆ dom(Γ). So since 𝑎 ∉ dom (Γ) we conclude that 𝑎 ∉ fv (h 𝜋).
Rule iAbs: Since fv(𝜏) ⊆ dom(Γ), we have 𝑎 ∉ dom (Γ, x:𝜏) and by induction hypothesis

𝑎 ∉ fv (e), which concludes.

Rule cAbs: Since fv(𝜎1) ⊆ dom(Γ), we conclude by induction hypothesis.

Rule LetCore By induction hypothesis𝑎 ∉ fv (e1). Consider𝑎′ = fv(𝜌1)\dom(Γ) and Γ, x:∀𝑎′.𝜌1 ⊢
e2 ⇔ 𝜌2. By definition of the 𝑎′, 𝑎 ∉ dom (Γ, x:∀𝑎′.𝜌1) so by induction hypothesis 𝑎 ∉ fv (e2)
which concludes.

Rule H-Var: There are no type variables in x.

Rule H-Ann: The scoping condition fv(𝜎) ⊆ dom(Γ) with the induction hypothesis ensures

the result.

Rule H-Infer: By induction hypothesis.

□

Lemma B.6. Assuming 𝑎 ∉ dom (Γ) and fv(𝜏) ⊆ dom(Γ).
(1) If Γ ⊢∀ e⇐ 𝜎 ⇒ e, then Γ ⊢∀ e⇐ 𝜎 [𝜏 /𝑎] ⇒ e[t /𝑎], where 𝜏 ⇒ t.

(2) If Γ ⊢ℎ h⇒ 𝜎 ⇒ h, then Γ ⊢ℎ h⇒ 𝜎 [𝜏 /𝑎] ⇒ h[t /𝑎], where 𝜏 ⇒ t.

(3) If Γ ⊢ e⇐ 𝜌 ⇒ e, then Γ ⊢ e⇐ 𝜌 [𝜏 /𝑎] ⇒ e[t /𝑎], where 𝜏 ⇒ t.

(4) If Γ ⊢ℎ h⇒ 𝜎 [𝜏 /𝑎] ⇒ h[t /𝑎] where 𝜏 ⇒ t and Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 { 𝜎 ; 𝜌r ⇒ er , then

Γ ⊢inst h : 𝜎 [𝜏 /𝑎] ⇒ e[t /𝑎] ; 𝜋 { 𝜎 [𝜏 /𝑎] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎] where 𝜏 ⇒ t.

Proof. By structural induction on elaboration derivations.

Rule Elab-Gen: Since 𝑎 ∉ dom (Γ, 𝑎′), by induction hypothesis Γ, 𝑎′ ⊢ e ⇐ 𝜌 [𝜏 ′ /𝑏] ⇒
e[t /𝑎] where𝜏 ⇒ t. By rule Elab-Gen Γ ⊢∀ e⇐ ∀𝑎′.∃𝑏.𝜌 [𝜏 /𝑎] ⇒ Λ𝑎.pack t

′
, e[t /𝑎] as∃𝑏.r[t /𝑎]

where𝜏 ′ ⇒ t

′
. Since fv(𝜏 ′) ⊆ dom(Γ, 𝑎′) and𝑎 ∉ dom (Γ),Λ𝑎.pack t

′
, e[t /𝑎] as∃𝑏.r[t /𝑎] =

(Λ𝑎.pack t

′
, e as∃𝑏.r) [t /𝑎] which concludes.

Rule Elab-App: By induction hypothesis and case (4) of the Lemma.

Rule Elab-iAbs: By induction hypothesis Γ, x:𝜏 ⊢ e ⇒ 𝜌 [𝜏 /𝑎] ⇒ e[t /𝑎]. We find that,

since fv(𝜏) ⊆ dom(Γ), 𝜌 [𝜏 /𝑎] [𝑎′ / ⌊𝜌 [𝜏 /𝑎]⌋
x
] = 𝜌 [𝑎′ / ⌊𝜌⌋

x
] [𝜏 /𝑎]. So by rule Elab-iAbs,

we obtain Γ ⊢ 𝜆x .e ⇒ 𝜏 → ∃𝑎′.𝜌 ′[𝜏 /𝑎] ⇒ 𝜆x:t.pack ⌊r⌋
x
, e[t /𝑎] as∃𝑎′.r′[t /𝑎] which

concludes since 𝜆x:t.pack ⌊r⌋
x
, e[t /𝑎] as∃𝑎′.r′[t /𝑎] = (𝜆x:t.pack ⌊r⌋

x
, e as∃𝑎′.r′) [t /𝑎].

Rule Elab-cAbs: By induction hypothesis.We also use fv(𝜎1) ⊆ dom(Γ) to prove 𝜆x:s1 .e[t /𝑎] =
(𝜆x:s1 .e) [t /𝑎].

Rule Elab-LetCore: After remarking that by construction of 𝑎′ = fv(𝜌1)\dom(Γ), ∀𝑎′.𝜌1 =

(∀𝑎′.𝜌1) [𝜏 /𝑎], we conclude by induction hypothesis.

Rule Elab-Var: Since 𝑎 ∉ dom (Γ), this means the 𝑎 do not appear in 𝜎 hence 𝜎 [𝜏 /𝑎] = 𝜎

and we are done.

Rule Elab-Ann: By induction hypothesis, and using the fact that fv(𝜏) ⊆ dom(Γ).
Rule Elab-Infer: By induction hypothesis.

To prove case (4) of the Lemma, we go through the derivation tree for Γ ⊢inst h : 𝜎 ⇒ h ; 𝜋 {
𝜎 ; 𝜌 ⇒ er and transform it by applying the substitution [𝜏 /𝑎] at every intermediary step. We

show that it is does not change the result, since this substitution does not affect the application of

the rules.

Rule Elab-ITyArg: Since fv(𝜎 ′) ⊆ dom(Γ) and 𝑎 ∉ dom (Γ), we conclude by noting that

𝜎 [𝜏 /𝑎] [𝜎 ′ / a] = 𝜎 [𝜎 ′ / a] [𝜏 /𝑎].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

An Existential Crisis Resolved 64:35

Rule Elab-IArg: By case (1) of the Lemma, from Γ ⊢∀ e
′ ⇐ 𝜎1 ⇒ e

′
we obtain Γ ⊢∀ e

′ ⇐
𝜎1 [𝜏 /𝑎] ⇒ e

′[t /𝑎]. Hence we correctly have Γ ⊢inst e e′ : 𝜎2 [𝜏 /𝑎] ⇒ (e e
′) [t /𝑎] ; 𝜋 {

𝜎 [𝜏 /𝑎] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎].
Rule Elab-IAll: We just notice that, since fv(𝜏) ⊆ dom(Γ), 𝜎 [𝜏 /𝑎] [𝜏 / a] = 𝜎 [𝜏 / a] [𝜏 /𝑎].
Rule Elab-IExistCore: The rule applies with Γ ⊢inst e : 𝜖 [⌊e[t /𝑎]⌋ / a] ⇒ open e[t /𝑎] ;

𝜋 { 𝜎 [𝜏 /𝑎] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎]. We conclude by noting that 𝜖 [⌊e[t /𝑎]⌋ / a] =

𝜖 [⌊e⌋ / a] [𝜏 /𝑎] and open e[t /𝑎] = (open e) [t /𝑎].
Rule Elab-IResult: Γ ⊢inst e : 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎] ; [] { [] ; 𝜌r [𝜏 /𝑎] ⇒ er [t /𝑎] is true.

□

Lemma B.7 (Free variable substitution). Given 𝑎 ∉ dom (Γ):
(1) If Γ ⊢∀ e⇐ 𝜎 , then Γ ⊢∀ e⇐ 𝜎 [𝜏 /𝑎].
(2) If Γ ⊢ℎ h⇒ 𝜎 , then Γ ⊢ℎ h⇒ 𝜎 [𝜏 /𝑎].
(3) If Γ ⊢ e⇒ 𝜌 , then Γ ⊢ e⇒ 𝜌 [𝜏 /𝑎].
(4) If Γ ⊢ℎ h ⇒ 𝜎 and Γ ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r , then Γ ⊢inst h : 𝜎 [𝜏 /𝑎] ; 𝜋 { 𝜎 [𝜏 /𝑎] ;

𝜌r [𝜏 /𝑎].

Proof. By corollary of Lemma B.6 □

Lemma B.8 (Substitution). Suppose Γ1 ⊢ e1 ⇒ 𝜌1 ⇒ e1 and take 𝑎 = fv(𝜌1)\fv(Γ1).
(1) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢ e2 ⇒ 𝜌2, then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢ e2 [e1 / x] ⇒ 𝜌2 [Λ𝑎.e1 / x].
(2) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢∀ e2 ⇐ 𝜎 , then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢∀ e2 [e1 / x] ⇐ 𝜎 [Λ𝑎.e1 / x]
(3) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢inst h : 𝜎 ; 𝜋 { 𝜎 ; 𝜌r , then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢inst h[e1 / x] : 𝜎 [Λ𝑎.e1 / x] ;

𝜋 [e1 / x] { 𝜎 [Λ𝑎.e1 / x] ; 𝜌r [Λ𝑎.e1 / x]
(4) If Γ1, x:∀𝑎.𝜌1, Γ2 ⊢ℎ h⇒ 𝜎 , then Γ1, Γ2 [Λ𝑎.e1 / x] ⊢ℎ h[e1 / x] ⇒ 𝜎 [Λ𝑎.e1 / x]

Proof. (1,2,3,4) By induction on e2.

e2 = x: Then Γ1, x:∀𝑎.𝜌1, Γ2 ⊢ℎ x ⇒ 𝜌2 implies 𝜌2 = 𝜌1 [𝜏 /𝑎]. This means that 𝜌2 [Λ𝑎.e1 / x] =
𝜌1 [𝜏 /𝑎] [Λ𝑎.e1 / x]. Since x does not appear in 𝜌1 (it is not in Γ1, which is used to type e1

with 𝜌1), we have in fact 𝜌2 [Λ𝑎.e1 / x] = 𝜌1 [𝜏 [Λ𝑎.e1 / x] /𝑎]. Thus, since Γ1 ⊢ e1 ⇐ 𝜌1 and

𝑎 ∉ dom (Γ1), by Lemma B.7 we obtain Γ1 ⊢ e1 ⇐ 𝜌2 [Λ𝑎.e1 / x], and then we conclude by

weakening.

e2 = e :: 𝜎 : By inversion on rules App and rule H-Ann, we get Γ1, x:∀𝑎.𝜌1 ⊢∀ e ⇐ 𝜎 . By

induction hypothesis, Γ1 ⊢∀ e[e1 / x] ⇐ 𝜎 [Λ𝑎.e1 / x]. Then, since projections do not appear

in type arguments, 𝜎 [Λ𝑎.e1 / x] = 𝜎 and Γ1 ⊢ℎ e[e1 / x] :: 𝜎 ⇒ 𝜎 , and we conclude by

applying rule App.

e2 = 𝜆y.e: By inversion on rule iAbs and induction hypothesis, Γ1, y:𝜏 [Λ𝑎.e1 / x] ⊢ e[e1 / x] ⇒
𝜌 [Λ𝑎.e1 / x]. Hence Γ1 ⊢ 𝜆y.e[e1 / x] ⇒ (𝜏 → ∃𝑏.𝜌 ′) [Λ𝑎.e1 / x].

e2 = let y = e3 in e4 By the induction hypothesis.

e2 = h 𝜋 with non-empty 𝜋 : By the induction hypothesis.

□

Theorem B.9 (Let-inlining). If x is free in e2 then:

(1) (Γ ⊢ let x = e1 in e2 ⇒ 𝜌) implies (Γ ⊢ e2 [e1 / x] ⇒ 𝜌)
(2) (Γ ⊢∀ let x = e1 in e2 ⇐ 𝜎) implies (Γ ⊢∀ e2 [e1 / x] ⇐ 𝜎)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

64:36 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Proof. (1) By inversion on the LetCore rule, we have
Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇒ 𝜌 ′

𝑎 = fv(𝜌1)\dom(Γ)
𝜌 = 𝜌 ′[Λ𝑎.e1 / x]

By Lemma B.8 we obtain Γ ⊢ e2 [e1 / x] ⇒ 𝜌 ′[Λ𝑎.e1 / x].
(2) Let 𝜎 = ∀𝑎.∃𝑏.𝜌 . By inversion on rule Gen, we have Γ, 𝑎 ⊢ let x = e1 in e2 ⇐ 𝜌 [𝜏 /𝑏]. By

inversion on rule LetCore, we obtain:
Γ ⊢ e1 ⇒ 𝜌1 ⇒ e1

Γ, x:∀𝑎.𝜌1 ⊢ e2 ⇐ 𝜌 ′

𝑎 = fv(𝜌1)\dom(Γ)
𝜌 = 𝜌 ′[Λ𝑎.e1 / x]

By Lemma B.8, we obtain Γ ⊢ e2 [e1 / x] ⇐ 𝜌 ′[Λ𝑎.e1 / x] i.e. Γ ⊢ e2 [e1 / x] ⇐ 𝜌 . We conclude

by rule Gen.

□

C DETAILS AND PROOFS ABOUT THE CORE LANGUAGE, FX

C.1 Typing rules

G ⊢ e : t (Core expression typing)

CE-Var

⊢ G ok x : t ∈ G

G ⊢ x : t

CE-Int

⊢ G ok

G ⊢ n : Int

CE-Abs

G, x : t1 ⊢ e : t2

x ∉ fv(t2)
G ⊢ 𝜆x:t1.e : t1 → t2

CE-App

G ⊢ e1 : t1 → t2

G ⊢ e2 : t1

G ⊢ e1 e2 : t2

CE-TAbs

G, a ⊢ e : t

G ⊢ Λa.e : ∀ a.t

CE-TApp

G ⊢ e : ∀ a.t1

G ⊢ t2 : type

G ⊢ e t2 : t1 [t2 / a]

CE-Pack

G ⊢ t : type
G ⊢ ∃ a.t2 : type
G ⊢ e : t2 [t / a]

G ⊢ pack t, e as∃ a.t2 : ∃ a.t2

CE-Open

G ⊢ e : ∃ a.t
G ⊢ open e : t[⌊e⌋ / a]

CE-Let

G ⊢ e1 : t1

G, x : t1 ⊢ e2 : t2

G ⊢ let x = e1 in e2 : t2 [e1 / x]

CE-Cast

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : t2

G ⊢ t : type (Core type well-formedness)

CT-Var

⊢ G ok a ∈ G

G ⊢ a : type

CT-Base

⊢ G ok G ⊢ ti : type

G ⊢ B t : type

CT-ForAll

G, a ⊢ t : type

G ⊢ ∀ a.t : type

CT-Exists

G, a ⊢ t : type

G ⊢ ∃ a.t : type

CT-Proj

⊢ G ok fv(e) ⊆ dom(G)
G ⊢ ⌊e⌋ : type

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

An Existential Crisis Resolved 64:37

G ⊢ 𝛾 : t1 ∼ t2 (Core coercion typing)

CG-Refl

G ⊢ t : type

G ⊢ ⟨t⟩ : t ∼ t

CG-Sym

G ⊢ 𝛾 : t1 ∼ t2

G ⊢ sym𝛾 : t2 ∼ t1

CG-Trans

G ⊢ 𝛾1 : t1 ∼ t2

G ⊢ 𝛾2 : t2 ∼ t3

G ⊢ 𝛾1 ;; 𝛾2 : t1 ∼ t3

CG-Base

⊢ G ok G ⊢ 𝛾 : t1 ∼ t2

G ⊢ B𝛾 : B t1 ∼ B t2

CG-ForAll

G, a ⊢ 𝛾 : t1 ∼ t2

G ⊢ ∀ a.𝛾 : (∀ a.t1) ∼ (∀ a.t2)

CG-Exists

G, a ⊢ 𝛾 : t1 ∼ t2

G ⊢ ∃ a.𝛾 : (∃ a.t1) ∼ (∃ a.t2)

CG-Proj

G ⊢ 𝜂 : e1 ∼ e2

G ⊢ ⌊𝜂⌋ : ⌊e1⌋ ∼ ⌊e2⌋

CG-ProjPack

G ⊢ pack t, e as t2 : t2

G ⊢ projpack t, e as t2 : ⌊pack t, e as t2⌋ ∼ t

CG-InstForAll

G ⊢ 𝛾1 : (∀ a.t1) ∼ (∀ a.t2)
G ⊢ 𝛾2 : t3 ∼ t4

G ⊢ 𝛾1
@𝛾2 : t1 [t3 / a] ∼ t2 [t4 / a]

CG-InstExists

G ⊢ 𝛾1 : (∃ a.t1) ∼ (∃ a.t2)
G ⊢ 𝛾2 : t3 ∼ t4

G ⊢ 𝛾1
@𝛾2 : t1 [t3 / a] ∼ t2 [t4 / a]

CG-Nth

G ⊢ 𝛾 : B t ∼ B t

′

G ⊢ nthn 𝛾 : tn ∼ t
′
n

G ⊢ 𝜂 : e1 ∼ e2 (Core expression coercion typing)

CH-Coherence

G ⊢ e : t1 G ⊢ 𝛾 : t1 ∼ t2

G ⊢ e ▷ 𝛾 : e ∼ (e ▷ 𝛾)

CH-Step

G ⊢ e : t

G ⊢ e
′

: t G ⊢ e −→ e
′

G ⊢ step e : e ∼ e
′

⊢ G ok (Core context well-formedness)

C-Nil

⊢ ∅ ok

C-Type

⊢ G ok a ∉ dom(G)
⊢ G, a ok

C-Term

G ⊢ t : type
x ∉ dom(G)
⊢ G, x : t ok

G ⊢ e −→ e
′

(Core operational semantics)

CS-Beta

G ⊢ (𝜆x:t.e1) e2 −→ e1 [e2 / x]

CS-AppCong

G ⊢ e1 −→ e
′
1

G ⊢ e1 e2 −→ e
′
1

e2

CS-AppPull

v = 𝜆x:t.e0

𝛾1 = sym (nth0 𝛾)
𝛾2 = nth1 𝛾

G ⊢ (v ▷ 𝛾) e −→ (v (e ▷ 𝛾1)) ▷ 𝛾2

CS-TAbsCong

G, a ⊢ e −→ e
′

G ⊢ Λa.e −→ Λa.e′

CS-TAbsPull

G ⊢ Λa.(v ▷ 𝛾) −→ (Λa.v) ▷ ∀ a.𝛾

CS-TBeta

G ⊢ (Λa.v) t −→ v[t / a]

CS-TAppCong

G ⊢ e −→ e
′

G ⊢ e t −→ e
′
t

CS-TAppPull

G ⊢ v : ∀ a.t0

G ⊢ (v ▷ 𝛾) t −→ v t ▷ (𝛾 @⟨t⟩)

CS-PackCong

G ⊢ e −→ e
′

G ⊢ pack t, e as t2 −→ pack t, e′ as t2

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

64:38 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

CS-OpenPack

G ⊢ open (pack t, v as t2) −→ v ▷ ⟨t2⟩@(sym (projpack t, v as t2))

CS-OpenPackCasted

G ⊢ open (pack t, (v ▷ 𝛾) as t2) −→ (v ▷ 𝛾) ▷ ⟨t2⟩@(sym (projpack t, (v ▷ 𝛾) as t2))

CS-OpenCong

G ⊢ e : t G ⊢ e −→ e
′

G ⊢ open e −→ open e
′ ▷ ⟨t⟩@(sym ⌊step e⌋)

CS-OpenPull

v = pack t1, v0 as∃ a.t0

G ⊢ open (v ▷ 𝛾) −→ (open v) ▷ 𝛾 @⌊v ▷ 𝛾⌋

CS-Let

G ⊢ let x = e1 in e2 −→ e2 [e1 / x]

CS-CastCong

G ⊢ e −→ e
′

G ⊢ e ▷ 𝛾 −→ e
′ ▷ 𝛾

CS-CastTrans

G ⊢ (v ▷ 𝛾1) ▷ 𝛾2 −→ v ▷ (𝛾1 ;; 𝛾2)

C.2 Structural properties

Lemma C.1 (Context regularity).

(1) If G ⊢ e : t, then ⊢ G ok.
(2) If G ⊢ t : type, then ⊢ G ok.
(3) If G ⊢ 𝛾 : t1 ∼ t2, then ⊢ G ok.
(4) If G ⊢ 𝜂 : e1 ∼ e2, then ⊢ G ok.

Proof. By straightforward structural induction on the typing rule, inverting a rule in the context

judgment in the cases of context extension. □

Lemma C.2 (Context prefix). If ⊢ G,G′ ok, then ⊢ G ok.

Proof. Straightforward induction on the structure of G
′
. □

Lemma C.3 (Weakening in types). If G ⊢ t : type and ⊢ G,G′ ok, then G,G′ ⊢ t : type.

Proof. By straightforward induction on G ⊢ t : type. In the case for rule CT-Proj, we use the

transitivity of ⊆. □

Lemma C.4 (Permutation in types). Suppose G
′
is a permutation of G and ⊢ G

′ ok. If G ⊢ t : type,
then G

′ ⊢ t : type.

Proof. By straightforward induction on G ⊢ t : type. In the case for rule CT-Proj, we use the

fact that ⊆ ignores permutations. □

Lemma C.5 (Permutation in context prefixes). Suppose G
′
is a permutation of G. If ⊢ G,G′′ ok

and ⊢ G
′ ok, then ⊢ G

′,G′′ ok.

Proof. By induction on the structure of G
′′
, appealing to Lemma C.4. □

Lemma C.6 (Permutation in contexts (1)).

(1) If ⊢ G, x : t, a,G′ ok, then ⊢ G, a, x : t,G′ ok.
(2) If ⊢ G, a′, a,G′ ok, then ⊢ G, a, a′,G′ ok.
Proof.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

An Existential Crisis Resolved 64:39

(1) By Lemma C.2, we know ⊢ G, x : t, a ok. Inversion tells us that G ⊢ t : type. We then use

rule C-Term to get ⊢ G, a, x : t ok. We are then done by Lemma C.5.

(2) By Lemma C.2, we know ⊢ G, a′, a ok. We are done by inversion, rule C-Type, and Lemma C.5

□

Lemma C.7 (Permutation in contexts). If ⊢ G1,G2, a,G3 ok, then ⊢ G1, a,G2,G3 ok.

Proof. By induction on the structure of G2, appealing to Lemma C.6. □

Lemma C.8 (Strengthening in contexts). If ⊢ G, x : t,G′ ok and G
′
contains only type variable

bindings. Then ⊢ G,G′ ok.

Proof. Straightforward induction on the structure of G
′
. □

Lemma C.9 (Strengthening in types). Suppose G, x : t
′,G′ ⊢ t : type, x ∉ fv(t), and G

′

contains only type variable bindings. Then G,G′ ⊢ t : type.

Proof. By induction on the structure of G, x : t
′,G′ ⊢ t : type.

Rule CT-Var: By appeal to Lemma C.8 and rule CT-Var.

Rule CT-Base: By the induction hypothesis and Lemma C.8.

Rule CT-ForAll: By the induction hypothesis.

Rule CT-Exists: By the induction hypothesis.

Rule CT-Proj: We use Lemma C.8 to show ⊢ G,G′ okWe know t = ⌊e⌋, and that we further

know that fv(e) ⊆ dom(G, x : t,G′). However, we also have assumed that x ∉ fv(e), and
thus fv(e) ⊆ dom(G,G′). We can finish with rule CT-Proj.

□

Lemma C.10 (Permutation in terms). Suppose G
′
is a permutation of G and ⊢ G

′ ok.
(1) If G ⊢ e : t, then G

′ ⊢ e : t.

(2) If G ⊢ 𝛾 : t1 ∼ t2, then G
′ ⊢ 𝛾 : t1 ∼ t2.

(3) If G ⊢ 𝜂 : e1 ∼ e2, then G
′ ⊢ 𝜂 : e1 ∼ e2.

(4) If G ⊢ e −→ e
′
, then G

′ ⊢ e −→ e
′
.

Proof. Straightforward mutual induction on the structure of the assumed typing judgment,

using Lemma C.4 in cases that refer to the well-formedness of types. □

Lemma C.11 (Weakening in terms). Suppose ⊢ G,G′ ok.
(1) If G ⊢ e : t, then G,G′ ⊢ e : t.

(2) If G ⊢ 𝛾 : t1 ∼ t2, then G,G′ ⊢ 𝛾 : t1 ∼ t2.

(3) If G ⊢ 𝜂 : e1 ∼ e2, then G,G′ ⊢ 𝜂 : e1 ∼ e2.

(4) If G ⊢ e −→ e
′
, then G,G′ ⊢ e −→ e

′
.

Proof. Straightforward mutual induction on the structure of the assumed judgment, allowing

variable renaming in rules CE-Abs, CE-TAbs, CE-Let, CG-ForAll, CG-Exists, and CS-TAbsCong

and using Lemma C.10 in those cases. Cases using the type well-formedness judgment additionally

need Lemma C.3. □

Lemma C.12 (Well-formed context types). If ⊢ G ok and x : t ∈ G then G ⊢ t : type.

Proof. By structural induction on the structure of ⊢ G ok.
Rule C-Nil: Not possible, by x : t ∈ G.

Rule C-Type: By the induction hypothesis and Lemma C.3.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

64:40 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Rule C-Term: If we have found the binding for x, the result comes straight from Lemma C.3.

Otherwise, we use the induction hypothesis and Lemma C.3.

□
Lemma C.13 (Expression scoping).

(1) If G ⊢ e : t, then fv(e) ⊆ dom(G).
(2) If G ⊢ 𝛾 : t1 ∼ t2, then fv(𝛾) ⊆ dom(G).
(3) If G ⊢ 𝜂 : e1 ∼ e2, then fv(𝜂) ⊆ dom(G).

Proof. Straightforward mutual induction on G ⊢ e : t, G ⊢ 𝛾 : t1 ∼ t2, and G ⊢ 𝜂 : e1 ∼ e2. We

must use Lemma C.12 in the case for rule CE-Abs. □

C.3 Preservation

Lemma C.14 (Type substitution in types).

(1) If G1, a,G2 ⊢ t1 : type and G1 ⊢ t2 : type, then G1,G2 [t2 / a] ⊢ t1 [t2 / a] : type.
(2) If ⊢ G1, a,G2 ok and G1 ⊢ t2 : type, then ⊢ G1,G2 [t2 / a] ok.

Proof. By mutual induction on the structure of the typing judgments.

Rule CT-Var: Here, we know t1 = a
′
, and inversion tells us ⊢ G1, a,G2 ok. The induction

hypothesis tells us that ⊢ G1,G2 [t2 / a] ok. We now have three cases:

a
′ ∈ G1: Wemust proveG1,G2 [t2 / a] ⊢ a′ : type. This comes straight from ⊢ G1,G2 [t2 / a] ok
and a

′ ∈ G1, by rule CT-Var.

a
′ = a: We must prove G1,G2 [t2 / a] ⊢ t2 : type. We are done by Lemma C.3.

a
′ ∈ G2: Wemust proveG1,G2 [t2 / a] ⊢ a′ : type. This comes straight from ⊢ G1,G2 [t2 / a] ok,
and a

′ ∈ G2 [t2 / a], by rule CT-Var. (Note that substitutions do not affect type variable

bindings.)

Rule CT-Base: By the induction hypothesis.

Rule CT-ForAll: By the induction hypothesis.

Rule CT-Exists: In this case, t1 = ∃ a′.t0. Inversion tells us G1, a,G2, a
′ ⊢ t0 : type. We now

use the induction hypothesis to get G1,G2 [t2 / a], a′ ⊢ t0 [t2 / a] : type and finish with

rule CT-Exists to get G1,G2 [t2 / a] ⊢ ∃ a′.t0 [t2 / a] : type as desired.
Rule CT-Proj: We know t1 = ⌊e⌋, and inversion tells us that ⊢ G1, a,G2 ok and fv(e) ⊆

dom(G1, a,G2). We must prove G1,G2 [t2 / a] ⊢ ⌊e[t2 / a]⌋ : type. The induction hypothesis

tells us that ⊢ G1,G2 [t2 / a] ok, so (using ruleCT-Proj) wemust prove only that fv(e[t2 / a]) ⊆
dom(G1,G2 [t2 / a]). Thismust be true, because a cannot be free in e[t2 / a] and dom(G2 [t2 / a]) =
dom(G2).

Rule C-Nil: Impossible.

Rule C-Type: We have two cases, depending on whether G2 is empty. If G2 is empty, our result

is immediate. Otherwise, it comes from the induction hypothesis.

Rule C-Term: By the induction hypothesis.

□
Lemma C.15 (Type substitution).

(1) If G1, x : t2,G2 ⊢ t1 : type and G1 ⊢ e2 : t2, then G1,G2 [e2 / x] ⊢ t1 [e2 / x] : type.
(2) If ⊢ G1, x : t2,G2 ok and G1 ⊢ e2 : t2, then ⊢ G1,G2 [e2 / x] ok.

Proof. By mutual induction on the typing judgments.

Rule CT-Var: We know that t1 = a, and inversion of rule CT-Var gives us ⊢ G1, x : t2,G2 ok
and a ∈ G1, x : t2,G2. We must prove G1,G2 [e2 / x] ⊢ a : type. The induction hypothesis

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

An Existential Crisis Resolved 64:41

gives us that ⊢ G1,G2 [e2 / x] ok. And, noting that substitutions do not affect type variable

bindings, we must have a ∈ G1,G2 [e2 / x]. Thus we are done by rule CT-Var.

Rule CT-Base: By the induction hypothesis.

Rule CT-ForAll: By the induction hypothesis.

Rule CT-Exists: By the induction hypothesis.

Rule CT-Proj: We know that t1 = ⌊e⌋; we must prove G1,G2 [e2 / x] ⊢ ⌊e⌋ [e2 / x] : type.
We know How

⊢ G1, x : t2,G2 ok inversion of rule CT-Proj

fv(e) ⊆ dom(G1, x : t2,G2) inversion of rule CT-Proj

⊢ G1,G2 [e2 / x] ok induction hypothesis

fv(e[e2 / x]) ⊆ fv(e) ∪ fv(e2)\{x} def’n of substitution

fv(e[e2 / x]) ⊆ dom(G1,G2 [e2 / x]) rules of ⊆
G1,G2 [e2 / x] ⊢ ⌊e⌋ [e2 / x] : type rule CT-Proj

Rule C-Nil: Impossible, as the starting context is not empty (it has a binding for x).

Rule C-Type: By the induction hypothesis, noting that the substitution in contexts will not

affect a type variable binding. (Type variables a and term variables x are distinct.)

Rule C-Term: We have two cases: either G2 is empty or not. If it is empty, then we are done by

Lemma C.1. If it is not empty, then we know that the substitution does not affect the name of

the last variable in the context, and we are done by the (first) induction hypothesis.

□

Lemma C.16 (Substitution in values). If v is a value, then v[e / x] is also a value.

Proof. Straightforward induction on the definition of values. □

Lemma C.17 (Substitution). Suppose G1 ⊢ e2 : t2.

(1) If G1, x : t2,G2 ⊢ e1 : t1, then G1,G2 [e2 / x] ⊢ e1 [e2 / x] : t1 [e2 / x].
(2) If G1, x : t2,G2 ⊢ 𝛾 : t0 ∼ t1, then G1,G2 [e2 / x] ⊢ 𝛾 [e2 / x] : t0 [e2 / x] ∼ t1 [e2 / x].
(3) If G1, x : t2,G2 ⊢ 𝜂 : e0 ∼ e1, then G1,G2 [e2 / x] ⊢ 𝜂 [e2 / x] : e0 [e2 / x] ∼ e1 [e2 / x].
(4) If G1, x : t2,G2 ⊢ e1 −→ e

′
1
, then G1,G2 [e2 / x] ⊢ e1 [e2 / x] −→ e

′
1
[e2 / x].

Proof. By mutual induction on the structure of G1, x : t2,G2 ⊢ e1 : t1, G1, x : t2,G2 ⊢ 𝛾 : t0 ∼ t1,

and G1, x : t2,G2 ⊢ 𝜂 : e0 ∼ e1.

Rule CE-Var: Here, e1 = x
′
for some x

′
. We have three cases:

x
′

: t1 ∈ G1: By Lemma C.1, we know that x ∉ dom(G1). Thus, x ≠ x
′
. Thus, e1 [e2 / x] =

e1 = x
′
. We now must show that t1 does not mention x. This comes from the fact that t1

is well-formed within G1 (Lemma C.12) and thus that fv(t1) ⊆ dom(G1), excluding x. We

have now established that t1 [e2 / x] = t1. Our final goal is thus G1,G2 [e2 / x] ⊢ x ′ : t1; we

know x
′

: t1 ∈ G1. To use rule CE-Var, we must only show ⊢ G1,G2 [e2 / x] ok. This comes

straight from Lemma C.15, and we are done with this case.

x
′ = x: Using Lemma C.15 to get ⊢ G1,G2 [e2 / x] ok, we are done by Lemma C.11.

x
′

: t1 ∈ G2: We know x ≠ x
′
by the well-formedness of the context. We must show

G1,G2 [e2 / x] ⊢ x ′ : t1 [e2 / x]. Since x ′ : t1 ∈ G2, then it must be that x
′

: t1 [e2 / x] ∈
G2 [e2 / x]. We are thus done by rule CE-Var and Lemma C.15.

Rule CE-Int: Direct from Lemma C.15, noting that the substitutions in the subject and object

have no effect.

Rule CE-Abs: Here, e1 = 𝜆x ′:t3 .e3 for some x
′
, t3, and e3. We also have t1 = t3 → t4 for

some t4 such that G1, x : t1,G2, x
′

: t3 ⊢ e3 : t4. The induction hypothesis tells us that

G1,G2 [e2 / x], x ′ : t3 [e2 / x] ⊢ e3 [e2 / x] : t4 [e2 / x]. This is exactly what we need to use

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

64:42 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

rule CE-Abs, and we are thus done (noting that it must be that fv(e2) does not include x ′, as
x
′
is locally bound).

Rule CE-App: By the induction hypothesis.

Rule CE-TAbs: By the induction hypothesis.

Rule CE-TApp: By the induction hypothesis and Lemma C.15.

Rule CE-Pack: Here, e1 = pack t, e as∃ a.t′, where t1 = ∃ a.t′. We must show G1,G2 [e2 / x] ⊢
pack t[e2 / x], e[e2 / x] as∃ a.t′[e2 / x] : ∃ a.t′[e2 / x]. Lemma C.15 gives us the first two

premises of rule CE-Pack. We must show G1,G2 [e2 / x] ⊢ e[e2 / x] : t
′[e2 / x] [t[e2 / x] / a].

By the algebra of substitutions, the object of this judgment equals t
′[t / a] [e2 / x]. By inversion

on our original assumption, we know G1, x : t2,G2 ⊢ e : t
′[t / a]. We are thus done by the

induction hypothesis.

Rule CE-Open: Here, e1 = open e, where G1, x : t2,G2 ⊢ e : ∃ a.t and t1 = t[⌊e⌋ / a]. We must

show G1,G2 [e2 / x] ⊢ open e[e2 / x] : t[⌊e⌋ / a] [e2 / x]. The object of this judgment equals

t[e2 / x] [⌊e⌋ [e2 / x] / a]. To use rule CE-Open, we must show G1,G2 [e2 / x] ⊢ e[e2 / x] :

∃ a.t[e2 / x]. This comes directly from the induction hypothesis, and so we are done with

this case.

Rule CE-Let: Similar to the case for rule CE-Abs.

Rule CE-Cast: By the induction hypothesis.

Rule CG-Refl: By Lemma C.15.

Rule CG-Sym: By the induction hypothesis.

Rule CG-Trans: By the induction hypothesis.

Rule CG-Base: By the induction hypothesis and Lemma C.15.

Rule CG-ForAll: By the induction hypothesis.

Rule CG-Exists: By the induction hypothesis.

Rule CG-Proj: By the induction hypothesis.

Rule CG-ProjPack: By the induction hypothesis.

Rule CG-InstForAll: By the induction hypothesis, noting that the substitutions commute, as

their domains are distinct.

Rule CG-InstExists: By the induction hypothesis, noting that the substitutions commute, as

their domains are distinct.

Rule CG-Nth: By the induction hypothesis.

Rule CH-Coherence: By the induction hypothesis.

Rule CH-Step: By the induction hypothesis.

Rule CS-Beta: Weknow e1 = (𝜆x0:t.e3) e4 and e
′
1
= e3 [e4 / x0].Wemust showG1,G2 [e2 / x] ⊢

(𝜆x0:t[e2 / x] .e3 [e2 / x]) e4 [e2 / x] −→ e3 [e4 / x0] [e2 / x]. RuleCS-Beta tells usG1,G2 [e2 / x] ⊢
(𝜆x0:t[e2 / x] .e3 [e2 / x]) e4 [e2 / x] −→ e3 [e2 / x] [e4 [e2 / x] / x0]. A little algebra on substitu-

tions (and the fact that x ≠ x0, renaming if necessary) shows that these judgments are the

same.

Rule CS-AppCong: By the induction hypothesis.

Rule CS-AppPull: By the induction hypothesis.

Rule CS-TAbsCong: By the induction hypothesis.

Rule CS-TAbsPull: By Lemma C.16.

Rule CS-TBeta: Similar to the case for rule CS-Beta, with an appeal to Lemma C.16.

Rule CS-TAppCong: By the induction hypothesis.

Rule CS-TAppPull: By the induction hypothesis and Lemma C.16.

Rule CS-PackCong: By the induction hypothesis.

Rule CS-OpenPack: By Lemma C.16.

Rule CS-OpenPackCasted: By Lemma C.16.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

An Existential Crisis Resolved 64:43

Rule CS-OpenCong: By the induction hypothesis.

Rule CS-OpenPull: By the induction hypothesis, with an appeal to Lemma C.16.

Rule CS-Let: Similar to the case for rule CS-Beta.

Rule CS-CastCong: By the induction hypothesis.

Rule CS-CastTrans: By the induction hypothesis, with an appeal to Lemma C.16.

□

Lemma C.18 (Type substitution in terms). Suppose G1 ⊢ t2 : type.
(1) If G1, a,G2 ⊢ e1 : t1, then G1,G2 [t2 / a] ⊢ e1 [t2 / a] : t1 [t2 / a].
(2) If G1, a,G2 ⊢ 𝛾1 : t0 ∼ t1, then G1,G2 [t2 / a] ⊢ 𝛾1 [t2 / a] : t0 [t2 / a] ∼ t1 [t2 / a].
(3) If G1, a,G2 ⊢ 𝜂1 : e0 ∼ e1, then G1,G2 [t2 / a] ⊢ 𝜂1 [t2 / a] : e0 [t2 / a] ∼ e1 [t2 / a].
(4) If G1, a,G2 ⊢ e −→ e

′
, then G1,G2 [t2 / a] ⊢ e[t2 / a] −→ e

′[t2 / a].

Proof. By mutual induction on the structure of G1, a,G2 ⊢ e1 : t1, G1, a,G2 ⊢ 𝛾1 : t0 ∼ t1, and

G1, a,G2 ⊢ 𝜂1 : e0 ∼ e1.

Rule CE-Var: Here, e1 = x for some x. We have two cases:

x : t1 ∈ G1: Similar to the reasoning in this case in the proof of Lemma C.17, but invoking

Lemma C.14.

x : t1 ∈ G2: Similar to the reasoning in this case in the proof of Lemma C.17, but invoking

Lemma C.14.

Rule CE-Int: By Lemma C.14.

Rule CE-Abs: By the induction hypothesis.

Rule CE-App: By the induction hypothesis.

Rule CE-TAbs: By the induction hypothesis.

Rule CE-TApp: By the induction hypothesis and Lemma C.14.

Rule CE-Pack: Similar to this case in the proof of Lemma C.17, using Lemma C.14.

Rule CE-Open: Similar to this case in the proof of Lemma C.17.

Rule CE-Let: Similar to this case in the proof of Lemma C.17.

Rule CE-Cast: By the induction hypothesis.

Rule CG-Refl: By Lemma C.14.

Rule CG-Sym: By the induction hypothesis.

Rule CG-Trans: By the induction hypothesis.

Rule CG-Base: By the induction hypothesis and Lemma C.14.

Rule CG-ForAll: By the induction hypothesis.

Rule CG-Exists: By the induction hypothesis.

Rule CG-Proj: By the induction hypothesis.

Rule CG-ProjPack: By the induction hypothesis.

Rule CG-InstForAll: By the induction hypothesis, noting that the substitutions commute as

their domains are distinct (renaming the local bound variable, if necessary).

Rule CG-InstExists: By the induction hypothesis, noting that the substitutions commute as

their domains are distinct (renaming the local bound variable, if necessary).

Rule CG-Nth: By the induction hypothesis.

Rule CH-Coherence: By the induction hypothesis.

Rule CH-Step: By the induction hypothesis.

Cases for G1, a,G2 ⊢ e −→ e
′: Similar to these cases in the proof of Lemma C.17.

□
Lemma C.19 (Object regularity).

(1) If G ⊢ e : t, then G ⊢ t : type.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

64:44 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

(2) If G ⊢ 𝛾 : t1 ∼ t2, then G ⊢ t1 : type and G ⊢ t2 : type.
(3) If G ⊢ 𝜂 : e1 ∼ e2, then there exist t1 and t2 such that G ⊢ e1 : t1 and G ⊢ e2 : t2.

Proof. By mutual structural induction on the typing judgments. Note that we know ⊢ G ok by

Lemma C.1.

Rule CE-Var: By Lemma C.12.

Rule CE-Int: Trivial, by rule CT-Base.

Rule CE-Abs: Here, we know t = t1 → t2. We know ⊢ G, x : t1 ok by Lemma C.1. Thus, by

Lemma C.12, we have G ⊢ t1 : type. The induction hypothesis gives us G, x : t1 ⊢ t2 : type,
but we also know that x ∉ fv(t2). We can use Lemma C.9 to get G ⊢ t2 : type, and we are

done by rule CT-Base.

Rule CE-App: By the induction hypothesis, inverting rule CT-Base.

Rule CE-TAbs: By the induction hypothesis and rule CT-ForAll.

Rule CE-TApp: Here, we know e = e1 t2, where t = t1 [t2 / a] and G ⊢ e1 : ∀a.t1 and

G ⊢ t2 : type. We must show G ⊢ t1 [t2 / a] : type; we are thus done by Lemma C.14.

Rule CE-Pack: By inversion.

Rule CE-Open: We know e = open e0, and (by inversion) G ⊢ e0 : ∃ a.t0. We must prove

G ⊢ t0 [⌊e0⌋ / a] : type. The induction hypothesis tells us that G ⊢ ∃ a.t0 : type. Inversion
by rule CT-Exists then tells us G, a ⊢ t0 : type. To use Lemma C.14, we must now show

G ⊢ ⌊e0⌋ : type. To use rule CT-Proj, we must now show the following:

⊢ G ok: This is from Lemma C.1.

fv(e0) ⊆ dom(G): This is from Lemma C.13.

Rule CT-Proj gives us G ⊢ ⌊e0⌋ : type and then Lemma C.14 gives us G ⊢ t0 [⌊e0⌋ / a] : type
as desired.

Rule CE-Let: By the induction hypothesis and Lemma C.15.

Rule CE-Cast: By the induction hypothesis.

Rule CG-Refl: By inversion.

Rule CG-Sym: By the induction hypothesis.

Rule CG-Trans: By the induction hypothesis.

Rule CG-Base: By the induction hypothesis and rule CT-Base.

Rule CG-ForAll: By the induction hypothesis and rule CT-ForAll.

Rule CG-Exists: By the induction hypothesis and rule CT-Exists.

Rule CG-Proj: By the induction hypothesis, Lemma C.13, and rule CT-Proj.

Rule CG-ProjPack: Here, 𝛾 = projpack t3, e as t4, and we must show G ⊢ ⌊pack t3, e as t4⌋ :

type and G ⊢ t3 : type. Inversion on the typing judgment gives us G ⊢ pack t3, e as t4 : t4.

This can be so only by rule CE-Pack. We can thus invert again to get G ⊢ t3 : type. We use

Lemma C.13 and we are done by rule CT-Proj.

Rule CG-InstForAll: In this case, we know 𝛾 = 𝛾1
@𝛾2, with inversion giving us G ⊢

𝛾1 : (∀a.t3) ∼ (∀a.t4) and G ⊢ 𝛾2 : t5 ∼ t6. We must show G ⊢ t3 [t5 / a] : type and

G ⊢ t4 [t6 / a] : type. Let’s focus on the first of these.

We know How

G ⊢ ∀ a.t3 : type induction hypothesis

G, a ⊢ t3 : type inversion of rule CT-ForAll

G ⊢ t5 : type induction hypothesis

G, a ⊢ t3 [t5 / a] : type Lemma C.14

The derivation for G ⊢ t4 [t6 / a] : type is similar.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

An Existential Crisis Resolved 64:45

Rule CG-InstExists: In this case, we know 𝛾 = 𝛾1
@𝛾2, with inversion giving us G ⊢

𝛾1 : (∃ a.t3) ∼ (∃ a.t4) and G ⊢ 𝛾2 : t5 ∼ t6. We must show G ⊢ t3 [t5 / a] : type and

G ⊢ t4 [t6 / a] : type. Let’s focus on the first of these.

We know How

G ⊢ ∃ a.t3 : type induction hypothesis

G, a ⊢ t3 : type inversion of rule CT-Exists

G ⊢ t5 : type induction hypothesis

G ⊢ t3 [t5 / a] : type Lemma C.14

The derivation for G ⊢ t4 [t6 / a] : type is similar.

Rule CG-Nth: By the induction hypothesis, followed by inverting rule CT-Base.

Rule CH-Coherence: By inversion, using rule CE-Cast.

Rule CH-Step: By inversion.

□

Theorem C.20 (Preservation). If G ⊢ e : t and G ⊢ e −→ e
′
, then G ⊢ e

′
: t.

Proof. By induction on the structure of G ⊢ e −→ e
′
.

Rule CS-Beta: We have e = (𝜆x:t1.e1) e2 and e
′ = e1 [e2 / x], and we know G ⊢ 𝜆x:t1.e1 :

t1 → t2 (with our original type t equalling t2) and G ⊢ e2 : t1. The former must be by

rule CE-Abs, and we can thus conclude G, x : t1 ⊢ e1 : t2 and x ∉ fv(t2). Lemma C.17 tells us

G ⊢ e1 [e2 / x] : t2 [e2 / x]. But since x ∉ fv(t2), this reduces to G ⊢ e1 [e2 / x] : t2, and we are

done with this case.

Rule CS-AppCong: By the induction hypothesis.

Rule CS-AppPull: In this case, we know e = (v ▷ 𝛾) e2, where v = 𝜆x:t0 .e0.

We know How

t = t2 inversion on rule CE-App

G ⊢ (v ▷ 𝛾) : t1 → t2 inversion on rule CE-App

G ⊢ e2 : t1 inversion on rule CE-App

G ⊢ v : t3 inversion on rule CE-Cast

t3 = t4 → t5 inversion on rule CE-Abs (using v =

𝜆x:t0 .e0)

G ⊢ 𝛾 : (t4 → t5) ∼ (t1 → t2) inversion on rule CE-Cast

G ⊢ nth0 𝛾 : t4 ∼ t1 rule CG-Nth

G ⊢ sym (nth0 𝛾) : t1 ∼ t4 rule CG-Sym

G ⊢ e2 ▷ sym (nth0 𝛾) : t4 rule CE-Cast

G ⊢ v (e2 ▷ sym (nth0 𝛾)) : t5 rule CE-App

G ⊢ nth1 𝛾 : t5 ∼ t2 rule CG-Nth

G ⊢ (v (e2 ▷ sym (nth0 𝛾))) ▷ nth1 𝛾 : t2 rule CE-Cast

Rule CS-TAbsCong: By the induction hypothesis.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

64:46 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Rule CS-TAbsPull: In this case, we know e = Λa.(v▷𝛾). We must prove G ⊢ (Λa.v)▷∀ a.𝛾 : t.

We know How

G ⊢ Λa.(v ▷ 𝛾) : t assumption

G, a ⊢ v ▷ 𝛾 : t1 inversion of rule CE-TAbs

t = ∀ a.t1 inversion of rule CE-TAbs

G, a ⊢ v : t2 inversion of rule CE-Cast

G, a ⊢ 𝛾 : t2 ∼ t1 inversion of rule CE-Cast

G ⊢ ∀ a.𝛾 : (∀ a.t2) ∼ (∀ a.t1) rule CG-ForAll

G ⊢ Λa.v : ∀ a.t2 rule CE-TAbs

G ⊢ (Λa.v) ▷ ∀ a.𝛾 : ∀ a.t1 rule CE-Cast

Rule CS-TBeta: We have e = (Λa.v1) t2 and e
′ = v1 [t2 / a]. We know G ⊢ Λa.v1 : ∀a.t1

(where our original type t equals t1 [t2 / a]). Inversion on rule CE-TAbs gives us G, a ⊢ v1 : t1.

We can now use Lemma C.18 to get G ⊢ v1 [t2 / a] : t1 [t2 / a] as desired.
Rule CS-TAppCong: By the induction hypothesis.

Rule CS-TAppPull: We have e = (v ▷ 𝛾) t0 where G ⊢ v : ∀a.t2, and we must prove

G ⊢ v t0 ▷ (𝛾 @⟨t0⟩) : t.

We know How

G ⊢ (v ▷ 𝛾) t0 : t assumption

G ⊢ v ▷ 𝛾 : ∀ a.t1 inversion of rule CE-TApp

G ⊢ t0 : type inversion of rule CE-TApp

t = t1 [t0 / a] inversion of rule CE-TApp

G ⊢ 𝛾 : (∀ a.t2) ∼ (∀ a.t1) inversion of rule CE-Cast

G ⊢ ⟨t0⟩ : t0 ∼ t0 rule CG-Refl

G ⊢ 𝛾 @⟨t0⟩ : t2 [t0 / a] ∼ t1 [t0 / a] rule CG-InstForAll

G ⊢ v t0 : t2 [t0 / a] rule CE-TApp

G ⊢ v t0 ▷ (𝛾 @⟨t0⟩) : t1 [t0 / a] rule CE-Cast

Rule CS-PackCong: By the induction hypothesis.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

An Existential Crisis Resolved 64:47

Rule CS-OpenPack: Here, we have e = open (pack t1, v0 as t0).
We know How

G ⊢ open (pack t1, v0 as t0) : t assumption

G ⊢ pack t1, v0 as t0 : ∃ a.t2 inversion

of

ruleCE-

Open

t = t2 [⌊pack t1, v0 as t0⌋ / a] inversion

of

ruleCE-

Open

G ⊢ v0 : t2 [t1 / a] inversion

of

ruleCE-

Pack

t0 = ∃ a.t2 inversion

of

ruleCE-

Pack

G ⊢ t0 : type inversion

of

ruleCE-

Pack

G ⊢ ⟨t0⟩ : (∃ a.t2) ∼ (∃ a.t2) ruleCG-

Refl

G ⊢ projpack t1, v0 as t0 : ⌊pack t1, v0 as t0⌋ ∼ t1 ruleCG-

ProjPack

G ⊢ sym (projpack t1, v0 as t0) : t1 ∼ ⌊pack t1, v0 as t0⌋ ruleCG-

Sym

G ⊢ ⟨t0⟩@(sym (projpack t1, v0 as t0)) : t2 [t1 / a] ∼ t2 [⌊pack t1, v0 as t0⌋ / a] ruleCG-

InstExists

G ⊢ v0 ▷ ⟨t0⟩@(sym (projpack t1, v0 as t0)) : t2 [⌊pack t1, v0 as t0⌋ / a] ruleCE-

Cast

We thus see that the reduct has the same type as the redex, and we are done with this case.

Rule CS-OpenPackCasted: Similar to the previous case; note that we need ruleCS-OpenPackCasted

distinct from rule CS-OpenPack only to support determinism of reduction; otherwise both

could be subsumed by a version of the rule that packed an expression e instead of a value.

Rule CS-OpenCong: We must have e = open e0. Inverting rule CE-Open in the derivation for

G ⊢ open e0 : t tells us G ⊢ e0 : ∃ a.t2 and t = t2 [⌊e0⌋ / a]. Given G ⊢ e0 −→ e
′
0
, we must now

show G ⊢ open e
′
0
▷ ⟨∃ a.t2⟩@(sym ⌊step e⌋) : t2 [⌊e0⌋ / a].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

64:48 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

We know How

G ⊢ e
′
0

: ∃ a.t2 induction hypothesis

G ⊢ step e0 : e0 ∼ e
′
0

rule CH-Step

G ⊢ ⌊step e0⌋ : ⌊e0⌋ ∼ ⌊e′0⌋ rule CG-Proj

G ⊢ sym ⌊step e0⌋ : ⌊e′
0
⌋ ∼ ⌊e0⌋ rule CG-Sym

G ⊢ ∃ a.t2 : type Lemma C.19

G ⊢ ⟨∃ a.t2⟩ : (∃ a.t2) ∼ (∃ a.t2) rule CG-Refl

G ⊢ ⟨∃ a.t2⟩@(sym ⌊step e0⌋) : t2 [⌊e′0⌋ / a] ∼ t2 [⌊e0⌋ / a] rule CG-InstExists

G ⊢ open e
′
0

: t2 [⌊e′0⌋ / a] rule CE-Open

G ⊢ open e
′
0
▷ ⟨∃ a.t2⟩@(sym ⌊step e0⌋) : t2 [⌊e0⌋ / a] rule CE-Cast

We are done with this case.

Rule CS-OpenPull: We have e = open (v ▷ 𝛾), where v = pack t0, v0 as∃ a.t1.

We know How

G ⊢ open (v ▷ 𝛾) : t assumption

G ⊢ v ▷ 𝛾 : ∃ a.t2 inversion of rule CE-Open

t = t2 [⌊v ▷ 𝛾⌋ / a] inversion of rule CE-Open

G ⊢ v : t3 inversion of rule CE-Cast

t3 = ∃ a.t1 inversion of rule CE-Pack

G ⊢ 𝛾 : (∃ a.t1) ∼ (∃ a.t2) inversion of rule CE-Cast

G ⊢ v ▷ 𝛾 : v ∼ v ▷ 𝛾 use of rule CH-Coherence

G ⊢ ⌊v ▷ 𝛾⌋ : ⌊v⌋ ∼ ⌊v ▷ 𝛾⌋ rule CG-Proj

G ⊢ 𝛾 @⌊v ▷ 𝛾⌋ : t1 [⌊v⌋ / a] ∼ t2 [⌊v ▷ 𝛾⌋ / a] rule CG-InstExists

G ⊢ open v : t1 [⌊v⌋ / a] rule CE-Open

G ⊢ open v ▷ 𝛾 @⌊v ▷ 𝛾⌋ : t2 [⌊v ▷ 𝛾⌋ / a] rule CE-Cast

Rule CS-Let: We have e = let x = e1 in e2.

We know How

G ⊢ let x = e1 in e2 : t assumption

G ⊢ e1 : t1 inversion of rule CE-Let

G, x : t1 ⊢ e2 : t2 inversion of rule CE-Let

t = t2 [e1 / x] inversion of rule CE-Let

G ⊢ e2 [e1 / x] : t2 [e1 / x] Lemma C.17

Rule CS-CastCong: We have e = e0 ▷ 𝛾 , where G ⊢ e0 −→ e
′
0
. We must show G ⊢ e

′
0
▷ 𝛾 : t.

We know How

G ⊢ e0 : t0 inversion of rule CE-Cast

G ⊢ 𝛾 : t0 ∼ t inversion of rule CE-Cast

G ⊢ e
′
0

: t0 induction hypothesis

G ⊢ e
′
0
▷ 𝛾 : t rule CE-Cast

Rule CS-CastTrans: We have e = (v ▷ 𝛾1) ▷ 𝛾2, and we must prove G ⊢ v ▷ (𝛾1 ;; 𝛾2) : t.

We know How

G ⊢ v ▷ 𝛾1 : t1 inversion of rule CE-Cast

G ⊢ 𝛾2 : t1 ∼ t inversion of rule CE-Cast

G ⊢ v : t2 inversion of rule CE-Cast (again)

G ⊢ 𝛾1 : t2 ∼ t1 inversion of rule CE-Cast

G ⊢ 𝛾1 ;; 𝛾2 : t2 ∼ t rule CG-Trans

G ⊢ v ▷ (𝛾1 ;; 𝛾2) : t rule CE-Cast

□

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

An Existential Crisis Resolved 64:49

C.4 Progress

Definition C.21 (Rewrite relation). Define rewrite relations on types t1 ⇒ t2 and terms e1 ⇒ e2

with the rules below.

t1 ⇒ t2 (Rewrite relation on types)

RT-Refl

t⇒ t

RT-Base

ti ⇒ t
′
i

B t⇒ B t

′

RT-ForAll

t⇒ t
′

∀ a.t⇒ ∀ a.t′

RT-Exists

t⇒ t
′

∃ a.t⇒ ∃ a.t′

RT-Proj

e⇒ e
′

⌊e⌋ ⇒ ⌊e′⌋

RT-ProjPack

t⇒ t
′

⌊pack t, e as∃ a.t0⌋ ⇒ t
′

e1 ⇒ e2 (Rewrite relation on terms)

RE-Refl

e⇒ e

RE-DropCo

e⇒ e
′

e ▷ 𝛾 ⇒ e
′

RE-AddCo

e⇒ e
′

e⇒ e
′ ▷ 𝛾

RE-Abs

t⇒ t
′

e⇒ e
′

𝜆x:t.e⇒ 𝜆x:t
′.e′

RE-App

e1 ⇒ e
′
1

e2 ⇒ e
′
2

e1 e2 ⇒ e
′
1

e
′
2

RE-TAbs

e⇒ e
′

Λa.e⇒ Λa.e′

RE-TApp

e⇒ e
′

t⇒ t
′

e t⇒ e
′
t
′

RE-Pack

t⇒ t
′

e⇒ e
′

t2 ⇒ t
′
2

pack t, e as t2 ⇒ pack t
′, e′ as t

′
2

RE-Open

e⇒ e
′

open e⇒ open e
′

RE-LetCong

e1 ⇒ e
′
1

e2 ⇒ e
′
2

let x = e1 in e2 ⇒ let x = e
′
1
in e
′
2

RE-Cast

e⇒ e
′

e ▷ 𝛾 ⇒ e
′ ▷ 𝛾 ′

RE-Beta

e1 ⇒ e
′
1

e2 ⇒ e
′
2

(𝜆x:t.e1) e2 ⇒ e
′
1
[e′

2
/ x]

RE-TBeta

e⇒ e
′

t⇒ t
′

(Λa.e) t⇒ e
′[t′ / a]

RE-OpenPack

e⇒ e
′

open (pack t, e as t2) ⇒ e
′

RE-Let

e1 ⇒ e
′
1

e2 ⇒ e
′
2

let x = e1 in e2 ⇒ e
′
2
[e′

1
/ x]

Definition C.22. Define⇒∗ to be the reflexive, transitive closure of⇒.

Lemma C.23 (Type substitution in rewrite relation).

(1) If t1 ⇒ t2, then t1 [t3 / a] ⇒ t2 [t3 / a].
(2) If e1 ⇒ e2, then e1 [t3 / a] ⇒ e2 [t3 / a].

Proof. By mutual induction on the structure of t1 ⇒ t2 or e1 ⇒ e2. □

Lemma C.24 (Type substitution in transitive rewrite relation).

(1) If t1 ⇒∗ t2, then t1 [t3 / a] ⇒∗ t2 [t3 / a].
(2) If e1 ⇒∗ e2, then e1 [t3 / a] ⇒∗ e2 [t3 / a].

Proof. By induction on the length of the reduction. □

Lemma C.25 (Substitution in rewrite relation).

(1) If t1 ⇒ t2, then t1 [e3 / x] ⇒ t2 [e3 / x].
(2) If e1 ⇒ e2, then e1 [e3 / x] ⇒ e2 [e3 / x].

Proof. By mutual induction on the structure of t1 ⇒ t2 or e1 ⇒ e2. □

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

64:50 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Lemma C.26 (Substitution in the transitive rewrite relation).

(1) If t1 ⇒∗ t2, then t1 [e3 / x] ⇒∗ t2 [e3 / x].
(2) If e1 ⇒∗ e2, then e1 [e3 / x] ⇒∗ e2 [e3 / x].

Proof. By induction on the length of the reduction. □
Lemma C.27 (Lifting in rewrite relation). Assume t1 ⇒ t2.

(1) For every t3, t3 [t1 / a] ⇒ t3 [t2 / a].
(2) For every e3, e3 [t1 / a] ⇒ e3 [t2 / a].

Proof. By mutual induction on the structure of t3 and e3.

t3 = a
′: We have two cases:

a
′ = a: We are done by assumption.

a
′ ≠ a: We are done by rule RT-Refl.

t3 = B t: By the induction hypothesis and rule RT-Base.

t3 = ∀ a′.t4: By the induction hypothesis and rule RT-ForAll.

t3 = ∃ a′.t4: By the induction hypothesis and rule RT-Exists.

t3 = ⌊e⌋: By the induction hypothesis and rule RT-Proj.

e3 = x: By rule RE-Refl.

e3 = 𝜆x:t.e: By the induction hypothesis and rule RE-Abs.

e3 = e1 e2: By the induction hypothesis and rule RE-App.

e3 = Λa.e: By the induction hypothesis and rule RE-TAbs.

e3 = e t: By the induction hypothesis and rule RE-TApp.

e3 = pack t, e as t
′: By the induction hypothesis and rule RE-Pack.

e3 = open e: By the induction hypothesis and rule RE-Open.

e3 = let x = e1 in e2: By the induction hypothesis and rule RE-LetCong.

e3 = e ▷ 𝛾 : By the induction hypothesis and rule RE-Cast. Note that the resulting coercion

need not be related to the initial coercion.

□
Lemma C.28 (Lifting in transitive rewrite relation). Assume t1 ⇒∗ t2.

(1) For every t3, t3 [t1 / a] ⇒∗ t3 [t2 / a].
(2) For every e3, e3 [t1 / a] ⇒∗ e3 [t2 / a].

Proof. By induction on the length of the reduction. □

Lemma C.29 (Parallel substitution of a type). Assume t1 ⇒ t2.

(1) If t3 ⇒ t4, then t3 [t1 / a] ⇒ t4 [t2 / a].
(2) If e3 ⇒ e4, then e3 [t1 / a] ⇒ e4 [t2 / a].

Proof. By mutual induction on t3 ⇒ t4 or e3 ⇒ e4.

Rule RT-Refl: By Lemma C.27.

Rule RT-Base: By the induction hypothesis.

Rule RT-ForAll: By the induction hypothesis.

Rule RT-Exists: By the induction hypothesis.

Rule RT-Proj: By the induction hypothesis.

Rule RT-ProjPack: By the induction hypothesis.

Rule RE-Refl: By Lemma C.27.

Rule RE-DropCo: By the induction hypothesis.

Rule RE-AddCo: By the induction hypothesis.

Rule RE-Abs: By the induction hypothesis.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

An Existential Crisis Resolved 64:51

Rule RE-App: By the induction hypothesis.

Rule RE-TAbs: By the induction hypothesis.

Rule RE-TApp: By the induction hypothesis.

Rule RE-Pack: By the induction hypothesis.

Rule RE-Open: By the induction hypothesis.

Rule RE-LetCong: By the induction hypothesis.

Rule RE-Cast: By the induction hypothesis.

Rule RE-Beta: By the induction hypothesis.

Rule RE-TBeta: By the induction hypothesis, noting that the bound variable in the rule can

be considered distinct from the variable being substituted.

Rule RE-OpenPack: By the induction hypothesis.

Rule RE-Let: By the induction hypothesis.

□

Lemma C.30 (Parallel substitution). Assume e1 ⇒ e2.

(1) If t3 ⇒ t4, then t3 [e1 / x] ⇒ t4 [e2 / x].
(2) If e3 ⇒ e4, then e3 [e1 / x] ⇒ e4 [e2 / x].

Proof. Similar to previous proof. □
Lemma C.31 (Local diamond).

(1) If t1 ⇒ t2 and t1 ⇒ t3, then there exists t4 such that t2 ⇒ t4 and t3 ⇒ t4.

(2) If e1 ⇒ e2 and e1 ⇒ e3, then there exists e4 such that e2 ⇒ e4 and e3 ⇒ e4.

Proof. By mutual induction on the derivation for t1 ⇒ t2 or e1 ⇒ e2. In all cases, if t1 ⇒ t3 or

e1 ⇒ e3 is by rule RT-Refl or rule RE-Refl, then we are done, with the common reduct being t2 or

e2. We thus ignore the possibility that t1 ⇒ t3 can be by rule RT-Refl or that e1 ⇒ e3 can be by

rule RE-Refl. Similarly, the use of rule RE-AddCo to rewrite e1 ⇒ e3 can be countered by a use of

rule RE-DropCo in e3 ⇒ e4, keeping the rest of the case untouched; we thus ignore the possibility

of rule RE-AddCo for e1 ⇒ e3.

Rule RT-Refl: In this case, t2 = t1 and t3 can be the common reduct.

Rule RT-Base: The rewrite t1 ⇒ t3 must also be by rule RT-Base. We are done by applying the

induction hypothesis.

Rule RT-ForAll: The rewrite t1 ⇒ t3 must also be by rule RT-ForAll. We are done by applying

the induction hypothesis.

Rule RT-Exists: The rewrite t1 ⇒ t3 must also be by rule RT-Exists. We are done by applying

the induction hypothesis.

Rule RT-Proj: We have two cases, depending on how t1 ⇒ t3 was rewritten:

Rule RT-Proj: By the induction hypothesis.

Rule RT-ProjPack: Wehave t1 = ⌊pack t, e as∃ a.t0⌋ and t2 = ⌊e′
0
⌋, where pack t, e as∃ a.t0 ⇒

e
′
0
. We further have t3 = t

′
where t⇒ t

′
.

We know How

e
′
0
= pack t

′′, e′′ as∃ a.t′′
0

inversion of rule RE-Pack

t⇒ t
′′

inversion of rule RE-Pack

t
′′′

such that t
′⇒ t

′′′
and t

′′⇒ t
′′′

induction hypothesis

choose t4 = t
′′′

t2 ⇒ t
′′′

rule RT-ProjPack

Rule RT-ProjPack: We have two cases, depending on how t1 ⇒ t3 was rewritten:

Rule RT-Proj: Like the rule RT-Proj/rule RT-ProjPack case above.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

64:52 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Rule RT-ProjPack: We are done by the induction hypothesis.

Rule RE-Refl: In this case, e2 = e1 and e3 can be the common reduct.

Rule RE-DropCo: We have two cases, depending on how e1 ⇒ e3 was rewritten:

Rule RE-DropCo: By the induction hypothesis.

Rule RE-Cast: In this case, e1 = e▷𝛾 , e⇒ e2, and e3 = e
′▷𝛾 ′ where e⇒ e

′
. The induction

hypothesis gives us e0 such that e2 ⇒ e0 and e
′⇒ e0. Choose e4 = e0. We see that e2 ⇒ e4

(from the induction hypothesis) and e3 ⇒ e4 by rule RE-Coherence.

Rule RE-AddCo: In this case, e2 = e
′ ▷ 𝛾 where e1 ⇒ e

′
. Use the induction hypothesis to

get e5 such that e
′ ⇒ e5 and e3 ⇒ e5. Choose e4 = e5. We conclude that e2 ⇒ e4 by

rule RE-DropCo.

Rule RE-Abs: By the induction hypothesis.

Rule RE-App: We have two cases, depending on how e1 ⇒ e3 was rewritten:

Rule RE-App: By the induction hypothesis.

Rule RE-Beta: We have e1 = (𝜆x:t1.e5) e6, e2 = (𝜆x:t2.e7) e8 (where t1 ⇒ t2, e5 ⇒ e7, and

e6 ⇒ e8 (inverting rule RE-Abs)), and e3 = e9 [e10 / x] (where e5 ⇒ e9 and e6 ⇒ e10).

We know How

e11 such that e7 ⇒ e11 and e9 ⇒ e11 induction hypothesis

e12 such that e8 ⇒ e12 and e10 ⇒ e12 induction hypothesis

Choose e4 = e11 [e12 / x]
e2 ⇒ e4 rule RE-Beta

e3 ⇒ e4 Lemma C.30

Rule RE-TAbs: By the induction hypothesis.

Rule RE-TApp: Similar to the rule RE-App case, but referring to rule RE-TBeta and Lemma

C.29.

Rule RE-Pack: By the induction hypothesis.

Rule RE-Open: Similar to the rule RE-DropCo case, but referring to rule RE-OpenPack.

Rule LetCong: Similar to the rule RE-App case, but referring to rule RE-Let. This case uses

Lemma C.30.

Rule Cast: By the induction hypothesis or following the logic in the case for rules RE-DropCo

and RE-Cast.

Rule Beta: We have two cases, depending on how e1 ⇒ e3 was rewritten.

Rule RE-App: See the case above about rules RE-App and RE-Beta.

Rule RE-Beta: We have e1 = (𝜆x:t1.e5) e6, e2 = e7 [e8 / x] (where e5 ⇒ e7 and e6 ⇒ e8),

and e3 = e9 [e10 / x] (where e5 ⇒ e9 and e6 ⇒ e10).

We know How

e11 such that e7 ⇒ e11 and e9 ⇒ e11 induction hypothesis

e12 such that e8 ⇒ e12 and e10 ⇒ e12 induction hypothesis

Choose e4 = e11 [e12 / x].
e2 ⇒ e4 Lemma C.30

e3 ⇒ e4 Lemma C.30

Rule RE-TBeta: Like the case for rule RE-Beta, but referring to rule RE-TApp and Lemma

C.29.

Rule RE-OpenPack: By the induction hypothesis or following the logic in the case for rules RE-

Open and RE-OpenPack.

Rule RE-Let: Like the case for rule RE-Beta, but referring to rule RE-LetCong. This case uses
Lemma C.30.

□

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

An Existential Crisis Resolved 64:53

Lemma C.32 (Confluence). If t1 ⇒∗ t2 and t1 ⇒∗ t3, then there exists t4 such that t2 ⇒∗ t4 and

t3 ⇒∗ t4.

Proof. Corollary of Lemma C.31. (See e.g. Baader and Nipkow [1998, Lemma 2.7.4].) □

Lemma C.33 (Rewriting existentials). If ∃ a.t1 ⇒∗ t3 and ∃ a.t2 ⇒∗ t3, then there exists t4

such that t1 ⇒∗ t4 and t2 ⇒∗ t4.

Proof. Ignoring reflexivity, the only rule that applies to ∃ a.t1 and ∃ a.t2 is rule RT-Exists.

Accordingly, an inductive argument shows that t3 must have the form∃ a.t4 for some t4. Furthermore,

the argument that reveals t4 also shows that t1 ⇒∗ t4 and t2 ⇒∗ t4 as desired. □

Lemma C.34 (Rewriting existentials). If ∀ a.t1 ⇒∗ t3 and ∀ a.t2 ⇒∗ t3, then there exists t4 such

that t1 ⇒∗ t4 and t2 ⇒∗ t4.

Proof. Similar to proof of Lemma C.33. □

Lemma C.35 (Rewriting base types). If B t⇒∗ t0 and B t

′⇒∗ t0, then, for each 𝑖 , there exists t
′′
i

such that ti ⇒∗ t
′′
i
and t

′
i
⇒ t

′′
i
.

Proof. Similar to proof of Lemma C.33. □

Lemma C.36 (Rewriting subsumes reduction). If G ⊢ e1 −→ e2, then e1 ⇒ e2.

Proof. By induction on the structure of G ⊢ e1 −→ e2. (We leave out uses of rule RE-Refl

throughout.)

Rule CS-Beta: By rule RE-Beta.

Rule CS-AppCong: By the induction hypothesis and rule RE-App.

Rule CS-AppPull: By rules RE-AddCo, RE-App, RE-DropCo, and RE-AddCo.

Rule CS-TAbsCong: By the induction hypothesis and rule RE-TAbs.

Rule CS-TAbsPull: By rules RE-AddCo, RE-TAbs, and RE-DropCo.

Rule CS-TBeta: By rule RE-TBeta.

Rule CS-TAppCong: By the induction hypothesis and rule RE-TApp.

Rule CS-TAppPull: By rules RE-AddCo, RE-TApp, and RE-DropCo.

Rule CS-PackCong: By the induction hypothesis and rule RE-Pack.

Rule CS-OpenPack: By rules RE-OpenPack and RE-AddCo.

Rule CS-OpenPackCasted: By rules RE-OpenPack and RE-AddCo.

Rule CS-OpenCong: By the induction hypothesis and rule RE-Open.

Rule CS-OpenPull: By rules RE-AddCo, RE-Open, and RE-DropCo.

Rule CS-Let: By rule RE-Let.

Rule CS-CastCong: By the induction hypothesis and rule RE-Cast.

Rule CS-CastTrans: by rules RE-Cast and RE-DropCo.

□

Lemma C.37 (Completeness of the rewrite relation). If G ⊢ 𝛾 : t1 ∼ t2, then there exists t3

such that t1 ⇒∗ t3 and t2 ⇒∗ t3.

Proof. By induction on the structure of the typing judgment.

Rule CG-Refl: Trivial.
Rule CG-Sym: By the induction hypothesis.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

64:54 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Rule CG-Trans: We have 𝛾 = 𝛾1 ;; 𝛾2.

We know How

G ⊢ 𝛾1 : t1 ∼ t4 inversion of rule CG-Trans

G ⊢ 𝛾2 : t4 ∼ t2 inversion of rule CG-Trans

t5 such that t1 ⇒∗ t5 and t4 ⇒∗ t5 induction hypothesis

t6 such that t4 ⇒∗ t6 and t2 ⇒∗ t6 induction hypothesis

t7 such that t5 ⇒∗ t7 and t6 ⇒∗ t7 Lemma C.32

We are done, as t1 ⇒∗ t7 and t2 ⇒∗ t7.

Rule CG-Base: By the induction hypothesis and rule RT-Base.

Rule CG-ForAll: By the induction hypothesis and rule RT-ForAll.

Rule CG-Exists: By the induction hypothesis and rule RT-Exists.

Rule CG-Proj: We have 𝛾 = ⌊𝜂⌋, where G ⊢ 𝜂 : e1 ∼ e2. We must show that ⌊e1⌋ and ⌊e2⌋ are
joinable. We have two cases, depending on the rule used to prove G ⊢ 𝜂 : e1 ∼ e2:

Rule CH-Coherence: In this case, e2 = e1 ▷ 𝛾
′
. The common reduct is ⌊e1⌋, and we are

done by rule RE-DropCo.

Rule CH-Step: In this case, G ⊢ e1 −→ e2. Lemma C.36 tells us e1 ⇒ e2; we are done by

rule RE-Proj.

Rule CG-ProjPack: We are done by rule RT-ProjPack and rule RT-Refl.

Rule CG-InstForAll: Similar to the case below, but using Lemma C.34.

Rule CG-InstExists: We have 𝛾 = 𝛾1
@𝛾2.

We know How

G ⊢ 𝛾1 : (∃ a.t4) ∼ (∃ a.t5) inversion of rule CG-InstExists

G ⊢ 𝛾2 : t6 ∼ t7 inversion of rule CG-InstExists

t8 that is the join of ∃ a.t4 and ∃ a.t5 induction hypothesis

t9 that is the join of t6 and t7 induction hypothesis

t10 that is the join of t4 and t5 Lemma C.33

t4 [t6 / a] ⇒∗ t10 [t6 / a] Lemma C.24

t5 [t7 / a] ⇒∗ t10 [t7 / a] Lemma C.24

t10 [t6 / a] ⇒∗ t10 [t9 / a] Lemma C.28

t10 [t7 / a] ⇒∗ t10 [t9 / a] Lemma C.28

t10 [t9 / a] is the join of t4 [t6 / a] and t5 [t7 / a] transitivity

Rule CG-Nth: By the induction hypothesis and Lemma C.35.

□

Definition C.38 (Value type). If t is a value type, then t is one of the following:

(1) a base type B t

′

(2) a universal type ∀ a.t′
(3) an existential type ∃ a.t′

Definition C.39 (Type head). If t is a value type, then define head(t) by the following equations:

head(B t) = B

head(∀ a.t) = ∀
head(∃ a.t) = ∃

Lemma C.40 (Value types). If G ⊢ v : t, then t is a value type.

Proof. Straightforward case analysis on the structure of v. □

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

An Existential Crisis Resolved 64:55

Lemma C.41 (Preservation of value types). If t is a value type and t⇒∗ t
′
, then t

′
is a value

type and head(t) = head(t′).

Proof. By induction over the length of the chain t⇒∗ t
′
.

Zero steps: Trivial.
𝑛 + 1 steps: We have t0 such that t⇒∗ t0 in 𝑛 steps and that t0 ⇒ t

′
. The induction hypothesis

tells us that t0 is a value type and that head(t) = head(t0). Analyzing how t0 rewrites to t
′
,

we see it must be by rule RT-Base, rule RT-ForAll, or rule RT-Exists. In any of these cases

t
′
is a value type such that head(t0) = head(t′).

□

Lemma C.42 (Consistency). If G ⊢ 𝛾 : t1 ∼ t2 and both t1 and t2 are value types, then head(t1) =
head(t2).

Proof. Lemma C.37 gives us t3 such that t1 ⇒∗ t3 and t2 ⇒∗ t3. Lemma C.41 then tells

us that t3 is a value type with head(t3) = head(t1). Another use of Lemma C.41 tells us that

head(t3) = head(t2). By transitivity of equality, head(t1) = head(t2). □
Lemma C.43 (Canonical forms).

(1) If G ⊢ v : t1 → t2, then there exist x and e such that v = 𝜆x:t1.e.

(2) If G ⊢ v : ∀ a.t, then there exists v0 such that v = Λa.v0.

(3) If G ⊢ v : ∃ a.t, then either:

(a) there exists t0, v0, and t1 such that v = pack t0, v0 as t1, or

(b) there exists t0, v0, 𝛾0, and t1 such that v = pack t0, (v0 ▷ 𝛾0) as t1

Proof.

(1) Straightforward case analysis on the structure of v.

□

Theorem C.44 (Progress). If G ⊢ e : t, where G contains only type variable bindings, then one of

the following is true:

(1) there exists e
′
such that G ⊢ e −→ e

′
;

(2) e is a value v; or

(3) e is a casted value v ▷ 𝛾 .

Proof. By induction on the structure of the typing judgment.

Rule CE-Var: Impossible, as G contains only type variable bindings.

Rule CE-Int: Here, e = n, a value.

Rule CE-Abs: Here, e = 𝜆x:t1.e1, a value.

Rule CE-App: We know e = e1 e2, with G ⊢ e1 : t1 → t2 and G ⊢ e2 : t1. Applying the induction

hypothesis on the first of these yields three possibilities:

There exists e
′
1
such that G ⊢ e1 −→ e

′
1
: In this case, e1 e2 steps by rule CS-AppCong.

e1 = v1: Lemma C.43 tells us that v1 = 𝜆x:t1 .e0. Thus, our original expression is e =

(𝜆x:t1 .e0) e2, which can reduce by rule CS-Beta.

e1 = v1 ▷ 𝛾1: Thus, our original expression is e = (v1 ▷ 𝛾1) e2. In order to use rule CS-

AppPull, we need only prove v1 = 𝜆x:t3 .e0 for some t3 and e0.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

64:56 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

We know How

G ⊢ (v1 ▷ 𝛾1) e2 : t assumption

G ⊢ v1 ▷ 𝛾1 : t4 → t inversion of rule CE-App

G ⊢ v1 : t5 inversion of rule CE-Cast

G ⊢ 𝛾1 : t5 ∼ (t4 → t) inversion of rule CE-Cast

t5 is a value type Lemma C.40

t5 = t6 → t7 Lemma C.42

v1 = 𝜆x:t3.e0 Lemma C.43

We can thus use rule CS-AppPull, and we are done with this case.

Rule CE-TAbs: Here, e = Λa.e0, where G, a ⊢ e0 : t0 and t = ∀a.t0. Using the induction

hypothesis on e0 gives us three possibilities:

There exists e
′
0
such that G, a ⊢ e0 −→ e

′
0
: We are done by rule CS-TAbsCong.

e0 = v0: The expression e = Λa.v0 is a value.

e0 = v0 ▷ 𝛾0: We are done by rule CS-TAbsPull.

Rule CE-TApp: We know e = e0 t0, with G ⊢ e0 : ∀a.t1 and G ⊢ t0 : type. A use of the

induction hypothesis on e0 yields three cases:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-TAppCong.

e0 = v0: We have e = v0 t0. Lemma C.43 tells us that v0 = Λa.v1, and thus that e =

(Λa.v1) t0. We are done by rule CS-TBeta.

e0 = v0 ▷ 𝛾0: We have e = (v0 ▷ 𝛾0) t0. To use rule CS-TAppPull, we must show G ⊢ v0 :

∀ a.t1.

We know How

G ⊢ (v0 ▷ 𝛾0) t0 : t assumption

G ⊢ v0 ▷ 𝛾0 : ∀ a.t3 inversion of rule CE-TApp

G ⊢ v0 : t4 inversion of rule CE-Cast

G ⊢ 𝛾0 : t4 ∼ ∀ a.t3 inversion of rule CE-Cast

t4 is a value type Lemma C.40

t4 = ∀ a.t1 Lemma C.42

We can now use rule CS-TAppPull, and so we are done with this case.

Rule CE-Pack: We know e = pack t0, e0 as∃ a.t1, where G ⊢ e0 : t1 [t0 / a]. We use the induc-

tion hypothesis on e0 to get three cases:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-PackCong.

e0 = v0: Then e = pack t0, v0 as∃ a.t1 is a value.

e0 = v0 ▷ 𝛾0: In this case, we have e = pack t0, (v0 ▷ 𝛾0) as∃ a.t1, which is a value.

Rule CE-Open: We know e = open e0, where G ⊢ e0 : ∃ a.t0. Using the induction hypothesis

on e0 gives us three possibilities:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-OpenCong.

e0 = v0: LemmaC.43 gives us two cases, depending onwhether the packed value is casted. If it

is not, we are done by rule CS-OpenPack; if it is, we are done by rule CS-OpenPackCasted.

e0 = v0 ▷ 𝛾0: In this case, we have e = open (v0 ▷ 𝛾0). To use rule CS-OpenPull, we must

show only that v0 = pack t1, v1 as∃ a.t0.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

An Existential Crisis Resolved 64:57

We know How

G ⊢ open (v0 ▷ 𝛾0) : t assumption

G ⊢ v0 ▷ 𝛾0 : ∃ a.t2 inversion of rule CE-Open

t = t2 [⌊v0 ▷ 𝛾0⌋ / a] inversion of rule CE-Open

G ⊢ v0 : t3 inversion of rule CE-Cast

G ⊢ 𝛾0 : t3 ∼ ∃ a.t2 inversion of rule CE-Cast

t3 is a value type Lemma C.40

t3 = ∃ a.t4 Lemma C.42

v0 = pack t1, v1 as∃ a.t0 Lemma C.43

We are thus done by rule CS-OpenPull.

Rule CE-Let: We are done by rule CS-Let.

Rule CE-Cast: We know e = e0 ▷ 𝛾0, where G ⊢ e0 : t0. We use the induction hypothesis on

e0 to get three cases:

There exists e
′
0
such that G ⊢ e0 −→ e

′
0
: We are done by rule CS-CastCong.

e0 = v0: Then e is a casted value v0 ▷ 𝛾0 and we are done.

e0 = v0 ▷ 𝛾1: We are done by rule CS-CastTrans.

□

C.5 Erasure

An erased expression 𝑒 is defined with the following grammar:

𝑒 ::= x | 𝜆x .𝑒 | 𝑒1 𝑒2 | let x = 𝑒1 in 𝑒2 | n
𝑣 ::= 𝜆x .𝑒 | n

Define the erasure function over core expressions with the following equations:

|x | = x

|𝜆x:t.e| = 𝜆x .|e|
|e1 e2 | = |e1 | |e2 |
|Λa.e| = |e|
|e t| = |e|

|pack t, e as t2 | = |e|
|open e| = |e|

|let x = e1 in e2 | = let x = |e1 | in |e2 |
|e ▷ 𝛾 | = |e|
|n| = n

The single-step operational semantics of erased expressions is given by these rules:

𝑒 −→ 𝑒 ′ (Single-step operational semantics)

ES-Beta

(𝜆x .𝑒1) 𝑒2 −→ 𝑒1 [𝑒2 / x]

ES-App

𝑒1 −→ 𝑒 ′
1

𝑒1 𝑒2 −→ 𝑒 ′
1
𝑒2

ES-Let

let x = 𝑒1 in 𝑒2 −→ 𝑒2 [𝑒1 / x]

Lemma C.45 (Erasure substitution). For all expressions e1 and e2, |e1 [e2 / x] | = |e1 | [ |e2 | / x].

Proof. Straightforward induction on the structure of e1. □

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.



2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

64:58 Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel Lee

Lemma C.46 (Erasure type substitution). For all expressions e and types t, |e[t / a] | = |e|.

Proof. Straightforward induction on the structure of e. □

Lemma C.47 (Single-step erasure (⇒)). If G ⊢ e −→ e
′
, then either |e| = |e′ | or |e| −→ |e′ |.

Proof. By induction on the structure of G ⊢ e −→ e
′
.

Rule CS-Beta: By rule ES-Beta and Lemma C.45.

Rule CS-AppCong: By the induction hypothesis and rule ES-App.

Rule CS-AppPull: Here, |e| = |e′ |.
Rule CS-TAbsCong: By the induction hypothesis.

Rule CS-TAbsPull: Here, |e| = |e′ |.
Rule CS-TBeta: By Lemma C.46.

Rule CS-TAppCong: By the induction hypothesis.

Rule CS-TAppPull: Here, |e| = |e′ |.
Rule CS-PackCong: By the induction hypothesis.

Rule CS-OpenPack: Here, |e| = |e′ |.
Rule CS-OpenPackCasted: Here, |e| = |e′ |.
Rule CS-OpenCong: By the induction hypothesis.

Rule CS-OpenPull: Here, |e| = |e′ |.
Rule CS-Let: By rule ES-Let and Lemma C.45.

Rule CS-CastCong: By the induction hypothesis.

Rule CS-CastTrans: Here, |e| = |e′ |.
□

Theorem C.48 (Erasure). If G ⊢ e −→∗ e
′
, then |e| −→∗ |e′ |.

Proof. By induction on the length of the reduction, appealing to Lemma C.47. □

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 64. Publication date: August 2021.


	Abstract
	1 Introduction
	2 Motivation and Examples
	2.1 Unknown Output Indices
	2.2 Increased Laziness
	2.3 Object Encoding
	2.4 Richly Typed Data Structures

	3 Key Idea: Existential Projections
	3.1 Strong Existentials via  pack  and  open 
	3.2 The unpack Trap
	3.3 The Importance of Strength

	4 Inferring Existentials
	4.1 Language Syntax
	4.2 Type System
	4.3 Instantiation Semantics

	5 Core Language
	5.1 Coercions
	5.2 Metatheory

	6 Elaboration
	6.1 Tweaking the IExist Rule
	6.2 A Different Approach

	7 Analysis
	7.1 Soundness
	7.2 Conservativity
	7.3 Stability

	8 Integrating with Today's GHC and Quick Look
	9 Discussion
	9.1 No Declarative (Non-syntax-directed) System with Existentials
	9.2 Class Constraints on Existentials
	9.3 Relevance and Existentials

	10 Related Work
	11 Conclusion
	Acknowledgments
	References
	A Elaboration rules
	B Proofs about our surface language, X
	C Details and proofs about the core language, FX
	C.1 Typing rules
	C.2 Structural properties
	C.3 Preservation
	C.4 Progress
	C.5 Erasure


