
Counting onQuantitative Type Theory (Extended version)

PRITAM CHOUDHURY, University of Pennsylvania, USA

RICHARD A. EISENBERG, Tweag I/O, France and Bryn Mawr College, USA

STEPHANIE WEIRICH, University of Pennsylvania, USA

HARLEY EADES III, Augusta University, USA

Quantitative Type Theory provides a mechanism to track and reason about resource usage in dependent type

systems. In this paper, we develop a novel version of such a type system, including dependent types, tensor

products, additive sums, and a graded modality. Since ordinary operational semantics is resource-agnostic;

we develop a heap-based operational semantics and prove a soundness theorem that shows correct usage

of resources. Several useful properties, including the ordinary type soundness theorem and single pointer

property for linear resources, can be derived from this theorem. We expect that our work will provide a

foundation for integrating linearity, irrelevance and dependent types in practical programming languages like

Haskell.

ACM Reference Format:
Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III. 2020. Counting on Quanti-

tative Type Theory (Extended version). 1, 1 (July 2020), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Consider this typing judgment.

x:
1Bool, y:1Int, z:0Bool ⊢ if x theny + 1 elsey − 1 : Int

Here, the numbers in the context indicates that the variable x is used once in the expression, the

variable y is also used only once (although it appears twice), and the variable z is never used at all.

This sentence is a judgment of Quantitative Type Theory [Atkey 2018; McBride 2016a], which is

concerned with making sure that the quantities annotating each variable in the context accurately

reflect how they are used at run time. Although this process seems straightforward in this example,

when mixed with the features of modern programming languages, this idea turns into a powerful

and broadly applicable method of instrumenting type systems with resource and dependency

tracking. By abstracting over a domain of resources, this same form of type system can be used for

a variety of purposes such as guaranteeing safe memory usage, preventing insecure information

flow, quantifying information leakage, and identifying irrelevant computations. Several research

languages, such as Idris 2 [Brady 2020] and Agda, are starting to adopt ideas from this domain,

and new systems [Gaboardi et al. 2013a; Orchard et al. 2019] are being developed to explore its

possibilities.

Authors’ addresses: Pritam Choudhury, Computer and Information Science, University of Pennsylvania, USA, pritam@

seas.upenn.edu; Richard A. Eisenberg, Tweag I/O, Paris, France, Computer Science, Bryn Mawr College, 101 N. Merion

Ave, Bryn Mawr, PA, 19010, USA, rae@richarde.dev; Stephanie Weirich, Computer and Information Science, University of

Pennsylvania, 3330 Walnut St, Philadelphia, PA, 19104, USA, sweirich@cis.upenn.edu; Harley Eades III, School of Computer

and Cyber Sciences, Augusta University, 2500 Walton Way, Augusta, GA, 30904, USA, harley.eades@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/7-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

Our concrete motivation for studying QTT is a desire to merge Haskell’s current form of a

linear type system [Bernardy et al. 2018] with dependent types [Weirich et al. 2017] in a clean

manner. Crucially, the combined system must support type erasure: when an argument is quantified

irrelevantly, the compiler must be able to eliminate it. Type erasure is key both to support parametric

polymorphism and to efficiently execute Haskell programs.

This paper reports on our approach, which synthesizes and refines the ideas of QTT into a novel

design. Although our work is strongly inspired by prior and concurrent work, our extensions and

analysis provide new insights into this exciting area. More specifically, we develop a dependently-

typed programming language integrated with an abstract treatment of resource usage. Our work

remains general; although Haskell is our eventual goal, our designs are not specific to that context.

We make the following contributions in this paper:

• As in many systems, our system gains flexibility by abstracting over an algebraic structure

that is used to count resources. In Section 2, we describe this structure, a partially-ordered

semiring and its properties. This use of a “resource algebra” is standard in this area, although

there are subtle differences in its specification that we identify.

• In Section 3 we present a simple type system, with unit, additive sums, multiplicative prod-

ucts and a graded modal type, which uses this algebraic structure to track resource usage.

We describe the semantics of this system using a standard, substitution-based small-step

operational semantics and show that the system is type sound. This system is again similar

to related and concurrent work; our purpose for this section is to establish a foundation to

explain our new ideas. However, even at this level, we identify subtleties in the design space.

• Because the standard operational semantics does not include resources, our standard preser-

vation and progress theorems cannot tell us that resource tracking is correct. In Section 4,

we design a heap-based operational semantics, inspired by Turner and Wadler [1999], where

every variable in the heap has an associated resource from our abstract structure, that mod-

els how resources are used during computation. We prove that our type system is sound

with respect to this instrumented semantics and track that usage by maintaining a balance

equation during computation. This proof tells us that well-typed terms will not get stuck by

running out of resources. In the process of showing that this result holds, we identify a key

restriction on case analysis that was not forced by the non-resourced version of type safety.

• We find that a quantitative generalization of single pointer property holds for linear resources

in Section 5. The single pointer property says that there is only a single pointer to a linear

resource. A quantitative generalization of this property states that there is only a single way

to refer to a linear resource; meaning, there is only a single pointer to each resource along this

way. Such a property would be useful in showing that in-place updates of linear resources

are safe.

• We then show how to extend these ideas to dependent types in Section 6. The key idea of this

extension is that uses of variables in irrelevant parts of the judgement should not “count”.

In other words, we use the same type system to check terms and types in this language,

but when computing the resource usage of the entire term, we do not include in the usages

from types. Our system differs from prior work [Atkey 2018; McBride 2016a] in that it is

a more uniform treatment of terms and types. In particular, prior work disables resource

checking in types, whereas our system merely ignores resources used in them, the same as

any other irrelevant component. We also allow sub-usaging, not considered in these work.

One challenge is making sure that our system can express parametric polymorphism, i.e. the

quantification over types that are not present at run time.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 3

• We have mechanized the most intricate parts of our proofs. Showing that syntactic properties

(substitution, weakening, preservation, progress) of a quantitative dependent type system

hold is tedious and error-prone, so we have completed these results with the help of the Coq

proof assistant. These proof scripts are available as anonymous supplemental material for

this submission.

2 ALGEBRA OF QUANTITIES
The goal of quantitative type theory is to track the demands that computations make on variables

that appear in the context. In other words, the type system enables a static accounting of runtime

resources “used” in the derivation of terms. This form of type system generalizes linear types

(where linear resources must be used exactly once) [Wadler 1990] and bounded linear types (where

bounded resources must be used a finite number of times) [Girard et al. 1992], as well as many,

many other type systems [Abadi et al. 1999; Abel and Bernardy 2020; Miquel 2001; Orchard et al.

2019; Pfenning 2001; Reed and Pierce 2010; Volpano et al. 1996].

This generality derives from the fact that the type system is parameterized over an abstract

algebraic structure of quantities, q, to model resources.
1
We want to be able to add and multiply

resources and expect that these operations conform to our general understanding of resource

arithmetic. An algebraic structure that captures this idea quite nicely is a partially-ordered semiring.

2.1 Partially-ordered semiring
A semiring is a setQ with two binary operations, _ + _ : Q ×Q → Q (addition) and _ · _ : Q ×Q →

Q (multiplication) and two distinguished elements, 0 (zero) and 1 (one) such that (Q,+, 0) is a
commutative monoid and (Q, ·, 1) is a monoid; furthermore, multiplication is both left and right

distributive over addition and zero is an annihilator for multiplication. Note that a semiring is not

a full ring because addition does not have an inverse—we cannot subtract.

We mark the variables in our contexts with quantities to represent demand of resources. In other

words, if we have a typing derivation for a term a with free variable x marked with q, we know

that a demands q uses of x.

We can weaken the precision of our type system (but increase its flexibility) by allowing the

judgement to express a more lenient demand than is actually necessary. For example, we may need

to use some variable only once but it may be convenient for the type system to declare that the

usage of that variable be unrestricted. To model this notion of sub-usage, we need an ordering on the

elements of the abstract semiring, reflecting our notion of “leniency". A partial order captures the

idea nicely. Since we work with a semiring, such an order should also respect the binary operations

of the semiring. Concretely, for a partial order ≤ onQ and q1,q2 ∈ Q , if q1 ≤ q2, then for any q ∈ Q ,

we should have q + q1 ≤ q + q2 and q · q1 ≤ q · q2 and q1 · q ≤ q2 · q. A semiring with a partial

order satisfying this condition is called a partially-ordered semiring.

This abstract structure captures the operations and properties that the type system needs for

resource accounting. Because we are working abstractly, we are limited to exactly these assumptions

when we reason about the quantities that we use for usage tracking. In trade, it means that we can

use a lot more things besides natural numbers to count.

2.2 Examples of partially-ordered semirings
Looking ahead, there are a few semirings that we are interested in. The trivial semiring has a single

element, and all operations just return that element. Our type system, when specialized to this

semiring, degenerates to the usual form of types as the quantities are uninformative.

1
Because of their abstract nature, quantities are sometimes called modalities, grades, resources, or usages.

, Vol. 1, No. 1, Article . Publication date: July 2020.

4 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

The boolean semiring has two elements, 0 and 1, with the property that 1 + 1 = 1. A type system

can draw quantities from this semiring to distinguish between variables that are used in terms

(marked with one) and ones that are unused (marked with zero). Note that in such a type system,

the quantity 1 does not correspond to a linear usage: this system cannot count how many times a

variable is used, only determine whether a variable has been used.

There are two different partial orders that make sense for the boolean semiring. If we use the

reflexive relation, then this type system precisely tracks relevance. If a variable is marked with 0 in

the context, then we know that the variable must not be used at runtime, and if it is marked with 1,

then we know that it must be used. On the other hand, if the partial ordering declares that 0 ≤ 1,

then we still can determine that 0 marked variables are unused, but we do not know anything

about the usage of 1 marked variables.

The linearity semiring has three elements, 0, 1 and ω, where addition and multiplication are

defined in the usual way after interpreting ω as “greater than 1". So, we have, 1 + 1 = ω and

ω + 1 = ω and ω · ω = ω. A type system drawing quantities from this semiring can track linear

usage by marking linear variables by 1 and unrestricted variables by ω. A suitable ordering for this

purpose is the reflexive closure of {(0,ω), (1,ω)}. We don’t want 0 ≤ 1 since then we wouldn’t be

able to guarantee that linear variables in the context are used exactly once. This semiring is the

one that makes the most sense for Haskell as it integrates linearity (1 and ω) with irrelevance (0).

The five-point semiring has five elements, 0, 1, Aff, Rel and ω, where addition and multipli-

cation are defined in the usual way after interpreting Aff as “1 or less", Rel as “1 or more", and

ω as unrestricted. An ordering reflecting this interpretation is the reflexive transitive closure of

{(0,Aff)), (1,Aff), (1, Rel), (Aff,ω), (Rel,ω)}. This semiring can be used to track irrelevant, linear,

affine, relevant and unrestricted usage.

Many other examples are possible. Orchard et al. [2019] and Abel and Bernardy [2020] include

comprehensive lists of these and other applications including:

• A type system for differential privacy [Reed and Pierce 2010], by using a semiring based on

real numbers that represent the information content of computation.

• An information flow type systems, that prevent high-security inputs from affecting the results

of low-security computation, by using a semiring of security levels with addition as the join

of the lattice, and multiplication as the meet.

• A type system that tracks covariant vs contravariant use of assumptions.

Now, we design a type system over an arbitrary partially-ordered semiring.

3 A SIMPLE QUANTITATIVE TYPE SYSTEM
Our goal is to design a dependent usage-aware type system. But, for simplicity, we start with a

simply-typed usage-aware system. The grammar and typing rules for this system appear in Figure

1 on page 5. It is parameterized over an arbitrary partially-ordered semiring (Q, 1, ·, 0,+, ≤) with
quantities q ∈ Q .

The typing judgement for this system has the form ∆ ; Γ ⊢ a : A and an excerpt of its definition

appears at the bottom of the figure. This judgement includes both a standard typing context ∆ and

a usage context Γ, a copy of the typing context annotated with quantities.

In any typing judgement, we expect the typing context and the usage context to always corre-

spond:

Notation 3.1 (Context dropping). The notation ⌊Γ⌋ denotes a context ∆ that is like the usage

context Γ, but with all quantities dropped. On the other hand Γ denotes the vector of quantities in Γ.

Notation 3.2 (Context correspondence). The notation ∆ ⊢ Γ denotes that ∆ = ⌊Γ⌋.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 5

(Grammar)

types A, B ::= Unit | A
q

−→ B | 2qA

terms a, b ::= x | λx :qA.a | a b

| unit | let unit = a in b | boxq a | let box x = a in b
| (a, b) | let (x,y) = a in b
| inj

1
a | inj

2
a | caseq a of b1; b2

values v ::= unit | λx :qA.a | boxq a | (a, b) | inj
1
a | inj

2
a

usage contexts Γ ::= � | Γ, x:qA
contexts ∆ ::= � | ∆, x:A

∆ ; Γ ⊢ a : A (Typing rules for Simple Type System (excerpt))

ST-Var

x < dom∆ ∆ ⊢ Γ

(∆, x:A) ; (0·Γ, x:1A) ⊢ x : A

ST-Weak

x < dom∆
∆ ; Γ ⊢ a : B

∆, x:A ; Γ, x:0A ⊢ a : B

ST-Lam

∆, x:A ; Γ, x:qA ⊢ a : B

∆ ; Γ ⊢ λx :qA.a : (A
q

−→ B)

ST-App

∆ ; Γ1 ⊢ a : (A
q

−→ B)

∆ ; Γ2 ⊢ b : A

∆ ; Γ1 + q ·Γ2 ⊢ a b : B

ST-Unit

� ; � ⊢ unit : Unit

ST-UnitE

∆ ; Γ1 ⊢ a : Unit
∆ ; Γ2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let unit = a in b : B

Fig. 1. The simply typed quantitative lambda calculus

Lemma 3.3 (Typing context correspondence). If ∆ ; Γ ⊢ a : A, then ∆ ⊢ Γ.

This style of including both a plain typing context ∆ and its usage counterpart Γ in the judgement

is merely for convenience; it allows us to easily tell when two usage contexts differ only in their

quantities. There are many alternative ways to express the same information in the type system:

we could work with only one usage context Γ and add constraints, or work with a typing context ∆
and a separate vector of quantities. Any of these approaches would work.

3.1 Type system basics
We are now ready to start our tour of the typing rules of this system, beginning with rule ST-Var.

We see here that a variable x has type A if it has type A in the context—that part is unsurprising.

However, as is typical in this style of system the context is is extended to include 0·Γ: this notation
means that all variables in the context—before x—must have a quantity of 0, which allows weakening

to happen at the variable axiom.

Notation 3.4 (Context scaling). The notation q · Γ denotes a context Γ′ such that, for each

x:
r
A ∈ Γ, we have x:q ·rA ∈ Γ′.

Accordingly, the rule ST-Var states that all variables other than x are not used in the expression

x, that is why their quantity is zero. Note also that x:
1
A occurs last in the context. If we wish to use

a variable that is not the last item in the context, the rule ST-Weak allows us to remove (reading

from bottom to top) zero-usage variables at the end of a context.

, Vol. 1, No. 1, Article . Publication date: July 2020.

6 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

Any quantitative type system must be careful around expressions that contain multiple sub-

expressions. Function application is a prime example, so we examine rule ST-App next. In the rule,

we see that the function a has type A

q

−→ B, meaning that it uses its argument, of type A, q times

to produce a result of type B. Accordingly, we must make sure that the argument expression b is

able to be used q times. Put another way, we must multiply the usage required for b, as recorded in

the typing context Γ2 which is used to check b, by q. We see this in the context used in the rule’s

conclusion: Γ1 + q ·Γ2.
This introduces another piece of important notation:

Notation 3.5 (Context addition). Adding contexts Γ1 + Γ2 is defined only when ⌊Γ1⌋ = ⌊Γ2⌋. The
result context Γ3 is such that, for every x:

q1
A ∈ Γ1 and x:

q2
A ∈ Γ2, we have x:

q1+q2
A ∈ Γ3. Accordingly,

⌊Γ3⌋ = ⌊Γ1⌋.

Our approach using two contexts ∆ and Γ works nicely here. Because both premises to rule ST-

App use the same ∆, we know that the required precondition of context addition is satisfied. The

high-level idea here is common in sub-structural type systems: whenever we use multiple sub-

expressions within one expression, we must split the context. One part of the context checks one

sub-expression, and the remainder checks other sub-expression(s).

Example 3.6 (Irrelevant application). Before considering the rest of the system, it is instructive

to step through an example involving a function that does not use its argument, in the context of the

linearity semiring. We say that such arguments are irrelevant. Suppose that we have a function f , of

type B

0

−→ A

1

−→ A. (Just from this type, we can see that f must be a constant function.) Suppose also

that we want to apply this function to some variable x. In this case, define the following contexts

∆0 = f :B

0

−→ A

1

−→ A ∆ = f :B

0

−→ A

1

−→ A, x:B

and usage contexts:

Γ0 = f :
1
B

0

−→ A

1

−→ A Γ1 = f :
1
B

0

−→ A

1

−→ A, x:0B Γ2 = f :
0
B

0

−→ A

1

−→ A, x:1B

and use them to construct a typing derivation for the application.

ST-App

ST-Weak

ST-Var

∆0 ; Γ0 ⊢ f : B

0

−→ A

1

−→ A

∆ ; Γ1 ⊢ f : B

0

−→ A

1

−→ A

ST-Var

∆ ; Γ2 ⊢ x : B

∆ ; Γ1 + 0·Γ2 ⊢ f x : A

1

−→ A

Working through the context expression, we see that the computed final context, derived in the

conclusion of the application rule is just Γ1 again. So although the variable x appears free in the

expression f x, it is within an irrelevant part of the term because it is the argument to a constant

function. Therefore this use does not contribute to the overall result.

3.2 Data structures
Because this type system subsumes linear types, we must include both an introduction and an

elimination form for every type form. This even includes the Unit type. We see in the rule that the

introduction form, the unit value, requires no quantities. This value is eliminated by the pattern

matching expression let unit = a in b, that consumes a, a Unit typed expression, and adds any

quantity used in its computation to those required by b, the next expression to evaluate in sequence.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 7

Graded modal type.

ST-Box

∆ ; Γ ⊢ a : A

∆ ; q ·Γ ⊢ boxq a : 2qA

ST-LetBox

∆ ; Γ1 ⊢ a : 2qA

∆, x:A ; Γ2, x:
q
A ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let box x = a in b : B

The type 2qA is called a usage modal type (also known as a graded necessity modality[Orchard

et al. 2019]). It is introduced by the construct boxq a, which uses the expression a q times to build

the box. This box can then be passed around as a unit. When unboxed (rule ST-LetBox), the

continuation has access to q copies of the contents.

Products.

ST-Pair

∆ ; Γ1 ⊢ a : A

∆ ; Γ2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ (a, b) : A ⊗ B

ST-Spread

∆ ; Γ1 ⊢ a : A1 ⊗ A2

∆ ; Γ2, x:
1
A1, y:

1
A2 ⊢ b : B

∆ ; Γ1 + Γ2 ⊢ let (x,y) = a in b : B

The type system includes (multiplicative) products, also known as tensor products. The two

components of these pairs do not share variable usage. Therefore the introduction rule adds the

two contexts together. These products must be eliminated via pattern matching because both

components must eventually be used in the continuation. An elimination form that projects only

one component of the tuple would lose the usage constraints from the other component. Note that

even though both components of the tuple must be used exactly once, by nesting a modal type

within the tuple, programmers can construct data structures with components of varying usage.

Sums.

ST-Inj1

∆ ; Γ ⊢ a : A1

∆ ; Γ ⊢ inj
1
a : A1 ⊕ A2

ST-Inj2

∆ ; Γ ⊢ a : A2

∆ ; Γ ⊢ inj
2
a : A1 ⊕ A2

ST-Case

q = q
′ + 1

∆ ; Γ1 ⊢ a : A1 ⊕ A2

∆ ; Γ2 ⊢ b1 : A1

q

−→ B

∆ ; Γ2 ⊢ b2 : A2

q

−→ B

∆ ; q ·Γ1 + Γ2 ⊢ caseq a of b1; b2 : B

Last, the system includes (additive) sums and case analysis. The introduction rules for the first

and second injections are no different from a standard type system. However, in the elimination

form, rule ST-Case, the quantities used for the scrutinee must be different than the quantities

used (and shared by) the two branches. Furthermore, the case expression may be annotated with

a quantity q that indicates how many copies of the scrutinee may be demanded in the branches.

Both branches of the case analysis must use these subcomponents at least once, as indicated by the

q = q
′ + 1 constraint, which forces the scrutinee to be relevant.

3.3 Type soundness
For the language presented above, we define the usual call-by-name reduction relation and excerpt

in Figure 2.

With this operational semantics, a syntactic proof of type soundness follows in the usual manner.

The substitution lemma needs to compute the resulting context by multiplying the quantities used

for the substituted terms by the number of times the variable was needed in the judgement and

adding that to the original context of resources, without x.

, Vol. 1, No. 1, Article . Publication date: July 2020.

8 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

a ; a
′

(Small-step reduction)

S-AppCong

a ; a
′

a b ; a
′
b

S-Beta

(λx :qA.a) b ; a{b/x}

S-UnitCong

a ; a
′

let unit = a in b ; let unit = a
′ in b

S-UnitBeta

let unit = unit in b ; b

Fig. 2. Small-step call-by-name reduction (excerpt)

Lemma 3.7 (Substitution). If ∆1 ; Γ ⊢ a : A and If ∆1, x :A,∆2 ; Γ1, x :
q
A, Γ2 ⊢ b : B then

∆1,∆2 ; Γ1 + q ·Γ, Γ2 ⊢ b{a/x} : B.

The preservation theorem shows that all quantities are preserved during computation. The usage

context is unchanged with each step.

Theorem 3.8 (Preservation). If ∆ ; Γ ⊢ a : A and a ; a
′
then ∆ ; Γ ⊢ a′ : A.

Finally, the progress lemma states that in an empty context, if computation has not finished, then

the term is not stuck. (The values are shown in Figure 1).

Theorem 3.9 (Progress). If � ; � ⊢ a : A then either a is a value or there exists some a′ such that

a ; a
′
.

3.4 Discussion and Variations
At this point, the language that we have developed is not too different from that found in prior

work, such as Bernardy et al. [2018], Orchard et al. [2019], Wood and Atkey [2020] and Abel and

Bernardy [2020]. Most differences are cosmetic especially in the treatment of usage contexts. Of

these, the most similar is the concurrently developed Abel and Bernardy [2020], which we compare

below.

• First, Abel and Bernardy [2020] includes a slightly more expressive form of pattern matching.

Their elimination forms for the box modality and products multiply each scrutinee by some

quantity q, providing that many copies of its subcomponents to the continuation, as in our

rule ST-Case. For simplicity, we have omitted this feature, it is not difficult to add.

• Second, Abel and Bernardy [2020] includes a way for the judgement to be less precise about

the usage required in a computation, called sub-usaging. We will add this rule in Section 5.2.

In addition, Abel and Bernardy [2020] require that the semiring include least-upper bounds

for the partial order of the semiring. This requirement is not necessary for type soundness,

but it does make type checking more compositional.

• Finally, in the rule for case, Abel and Bernardy [2020] replace the requirement that q = q
′ + 1

with a requirement that q ≤ 1. These preconditions are not equivalent in an arbitrary

partially-ordered semiring. Furthermore, it turns out that neither condition is motivated by

the type soundness theorem stated above: the theorem holds without it. Their condition was

instead motivated by their parametricity theorems. Our condition is motivated by the heap

soundness theorem that we present in the next section.

In particular, the standard type soundness theorem that we showed above is not very informative

since it does not show that the quantities are correctly used. But this is as far as we can get with

the usage agnostic small-step reduction relation defined above. To show correct usage of quantities,

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 9

our reduction relation should include an accounting mechanism for usage. It should show the

flow of variable usage; how much we have used up, how much we are left with, etc. A heap based

semantics turns out to be suitable for this purpose. Heap semantics has been used to model many

languages, including resource-aware ones. We follow Launchbury [1993] and Turner and Wadler

[1999] in developing a heap semantics for our language.

4 HEAP SEMANTICS
A heap semantics shows how a term evaluates when the free variables of the term are assigned to

some terms. The assignments are stored in a heap, represented here as an ordered list. We associate

an allowed usage, basically an abstract quantity of resources, to each assignment. We change these

quantities as the evaluation progresses. For example, a typical call-by-name reduction goes like

this:

[x
3

7→ 1,y
1

7→ x + x](x + y) look up value of x , decrement its usage

⇒[x
2

7→ 1,y
1

7→ x + x]1 + y look up value of y, decrement its usage

⇒[x
2

7→ 1,y
0

7→ x + x]1 + (x + x) look up value of x , decrement its usage

⇒[x
1

7→ 1,y
0

7→ x + x]1 + (1 + x) look up value of x , decrement its usage

⇒[x
0

7→ 1,y
0

7→ x + x]1 + (1 + 1) addition step

⇒[x
0

7→ 1,y
0

7→ x + x]1 + 2 addition step

⇒[x
0

7→ 1,y
0

7→ x + x]3

4.1 Reduction Relation
The reduction above is expressed informally as a sequence of pairs of heaps H and expressions a.

We formalize this relation using the following judgment, which appears in Fig 3.

[H] a ⇒S [H
′
; u′ ; Γ′] a′

The meaning of this relation is that the term a uses the resources of heap H and steps to a′ with
H ′

being the left-over heap. The relation also maintains additional information about evaluation,

which we explain below.

Heap assignments are of the form x

q

7→ Γ ⊢ a : A, associating a variable with its allowed usage

q and assignment a. The context Γ and type A help in the proof of our soundness theorem (4.11).

For a heap H , we use ⌊H⌋ to extract just the list of underlying assignments. For example, for

H = [x
q

7→ Γ ⊢ a : A], we have ⌊H⌋ = [x 7→ a].
Because we use a call-by-name reduction, we don’t evaluate the terms in the heap; we just modify

the quantities associated with the assignments as they are retrieved from the heap. Therefore,

after any step, H
′
will contain all the previous assignments of H , possibly with different usages.

Furthermore, a beta-reduction step may also add new assignments to H ′
. To allocate new variable

names appropriately, we need a support set S in this relation; fresh names are chosen avoiding the

variables in this set. We keep track of these new variables that are added to the heap along with

, Vol. 1, No. 1, Article . Publication date: July 2020.

10 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

[H] a ⇒S [H
′
; u′ ; Γ′] a′ (Small-step reduction relation (excerpt))

Small-Var

[H1, x
(q+1)
7→ Γ ⊢ a : A,H2] x ⇒S [H1, x

q

7→ Γ ⊢ a : A,H2 ; 0 |H1 | ⋄1⋄0 |H2 |
; �] a

Small-AppL

[H] a ⇒S∪ fv b [H
′
; u′ ; Γ] a′

[H] a b ⇒S [H
′
; u′ ; Γ] a′ b

Small-App

x < domH ∪ fv b ∪ S

a
′ = a{x/y}

[H] (λy :qA.a) b ⇒S [H, x
q
′

7→ Γ ⊢ b : A ; 0 |H | ⋄0 ; x:q
′

A] a′

Small-UnitL

[H] a ⇒S∪ fv b [H
′
; u′ ; Γ] a′

[H] let unit = a in b ⇒S [H
′
; u′ ; Γ] let unit = a

′ in b

Small-UnitE

[H] let unit = unit in b ⇒S [H ; 0 |H |
; �] b

Fig. 3. Heap semantics

Notation 4.1. The notation 0n denotes a vector of 0’s of length n. When n is clear from the context,

we simply write 0. The notation u1 ⋄u2 denotes vector concatenation. Here fv a stands for the free

variables of a.

the resources of their assignments using the usage context Γ′.2 Therefore, after a step [H] a ⇒S

[H ′
; u′ ; Γ′] a′, the length of H

′
is the sum of the lengths of H and Γ′.

Now, because we work with an arbitrary semiring (possibly without subtraction), this heap

semantics is non-deterministic. For example, consider a step [x
q
7→ a]x ⇒ [x

q′
7→ a]a, where

q = q′ + 1. Here, we are using x once, so we need to reduce its usage by 1. But in an arbitrary

semiring, there may exist multiple new quantities, q′ , q′′, such that q = q′ + 1 = q′′ + 1. For

example, in the linearity semiring, we have ω = 1 + 1 = ω + 1. In this case, [x
ω
7→ a]x ⇒ [x

1

7→ a]a

and [x
ω
7→ a]x ⇒ [x

ω
7→ a]a.

The absence of subtraction also means that given an initial heap and a final heap, we really

don’t know how much resources have been used by the computation. The only way to know this

is to keep track of resources while they are being used. The amount of resources used up can

be expressed as a quantity vector u′, with the components showing usage at the corresponding

variables in H
′
. (The length of u′ will always be the same as H

′
.)

The rules in Figure 3 have a one-to-one correspondence with the ordinary small-step rules

presented earlier. But there are some crucial differences. The beta rules, instead of immediate

substitution, load new assignments into the heap. The var rule changes the usage of the assignment

of the corresponding variable. This is the only place where usage gets modified. This is because

here alone we use a resource from the heap, the resource being the term the variable is assigned.

The multi-step reduction relation is the transitive closure of the single-step relation.

2
Instead of full contexts Γ′, we could have just used a list of variable, usage pairs here; but we pass dummy types along with

them for ease of presentation later.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 11

[H] a ⇒∗
S
[H ′

; u′ ; Γ] b (Multi-Step relation)

Multi-One

[H] a ⇒S [H
′
; u′ ; Γ] b

[H] a ⇒∗
S
[H ′

; u′ ; Γ] b

Multi-Many

[H] a ⇒S [H
′
; u′ ; Γ1] b1

[H ′] b1 ⇒
∗
S
[H ′′

; u′′ ; Γ2] b

[H] a ⇒∗
S
[H ′′

; u′ ⋄0 |Γ2 | + u′′ ; Γ1, Γ2] b

Nowwe look at some properties of this stepping relation. Our heap-semantics is non-deterministic

with respect to the usages but it always produces the same final result, assuming that selecting a

fresh variable is deterministic.

Lemma 4.2 (Determinism). If [H1] a ⇒S [H ′
; u′ ; Γ′] a′ and [H2] a ⇒S [H ′′

; u′′ ; Γ′′] a′′ and
⌊H1⌋ = ⌊H2⌋, then a

′ = a′′ and ⌊H ′⌋ = ⌊H ′′⌋.

Let us call heaps H1 and H2 similar iff ⌊H1⌋ = ⌊H2⌋. Furthermore, for a reduction [H] a ⇒S

[H ′
; u′ ; Γ′] a′, call [⌊H⌋]a ⇒S [⌊H ′⌋]a′ the erased view of reduction. Finally, call a reduction

consisting of n steps an n-chain reduction. The above lemma then says that the erased view of

every n-chain reduction of any term a, starting with similar heaps, is the same. So if there exists an

n-chain reduction of a starting with heap H , we may as well forget all the annotations and evaluate

a for n steps starting with ⌊H⌋. And by this lemma, such an evaluation in an erased environment

is deterministic and hence unique. The reduced term that we get is the same. Along with the

soundness theorem, this shall give us a deterministic reduction strategy that is correct.

The reduction relation enforces fair usage of resources, leading to the following theorem.

Theorem 4.3 (Conservation). If [H] a ⇒∗
S
[H ′

; u′ ; Γ′] a′, then H ⋄ Γ′ = H
′ + u′.

Here, H represents the available resources and Γ′ represents the newly added resources; whereas

H
′
represents the resources left and u′ the resources that were consumed. So the theorem says that

the initial resources along with those that are added during evaluation, are equal to the remaining

resources plus those that were used up.

4.2 Bisimilarity
Now that we have two reduction relations, we want to know how they compare to each other.

For comparison, we need to define some terms. We call a heap acyclic iff the term assigned to a

variable does not refer to itself or to any other variables appearing subsequently in the heap. Note

that our heap-based reduction relation preserves acyclicity. Now, for an acyclic heap H , we define

a{H } as the term obtained by substituting in a, in reverse order, the corresponding terms for the

variables in the heap. This gives us the following bisimilarity lemma. (Note that;∗
is the reflexive,

transitive closure of ;.)

Lemma 4.4. If H is an acyclic heap and [H] a ⇒S [H
′
; u′ ; Γ′] a′, then a{H } = a

′{H ′} or a{H } ;

a
′{H ′}. Further, if [�] a ⇒S [H

′
; u′ ; Γ′] a′, then a ; a

′{H ′}.

Lemma 4.5. If a ; a1, then for any S such that fv a ⊆ S , we have [�] a ⇒S [H ; u ; Γ] a2 and
a2{H } = a1. Also, if a ;∗ a1, then for any S such that fv a ⊆ S , we have [�] a ⇒∗

S
[H ; u ; Γ] a2 and

a2{H } = a1.

4.3 Heap compatibility
The key thing to note about this heap-based reduction is that now terms can “get stuck” in two

different ways: first, because they are not well-typed and second, because the heap does not contain

enough resources. Our claim is that if the resources contained in a heap is judged to be “right" for a

, Vol. 1, No. 1, Article . Publication date: July 2020.

12 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

term by the type system, then the evaluation of the term in such a heap does not get stuck. This

would mean that the type system does a proper accounting of the resource usage of terms. Let us

look at the following evaluation:

[x
2

7→ 1,y
1

7→ x + x](x + y) look up value of x , decrement its usage

⇒[x
1

7→ 1,y
1

7→ x + x]1 + y look up value of y, decrement its usage

⇒[x
1

7→ 1,y
0

7→ x + x]1 + (x + x) look up value of x , decrement its usage

⇒[x
0

7→ 1,y
0

7→ x + x]1 + (1 + x) look up value of x , stuck!

It gets stuck because the starting heap does not contain enough resources for the evaluation

of the term. The term needs to use x thrice; whereas the heap contains only two copies of x .
The type system knows this information about resource requirement and can judge whether a

heap contains enough resources. We express this idea through the compatibility relation. Given a

typing judgement ∆ ; Γ ⊢ a : A, we use the judgement H ⊢ ∆; Γ to assert that H is an appropriate

environment for evaluating a.

H ⊢ ∆; Γ (Heap Compatibility)

Compat-Empty

� ⊢ �;�

Compat-Cons

H ⊢ ∆; Γ1 + (q ·Γ2)
∆; Γ2 ⊢ a : A

x < domH ∆ ⊢ Γ1

H, x
q

7→ Γ2 ⊢ a : A ⊢ ∆, x:A; Γ1, x:
q
A

Example 4.6. For

� ; � ⊢ x1 : Int

x1:Int ; x1:2Int ⊢ x1 + x1 : Int

x1:Int, x2:Int ; x1:1Int, x2:1Int ⊢ x1 + x2 : Int

x1:Int, x2:Int, x3:Int ; x1:0Int, x2:1Int, x3:1Int ⊢ x3 + x2 : Int

we have,

[x1
8

7→ 1, x2
3

7→ x1 + x1, x3
1

7→ x1 + x2, x4
1

7→ x3 + x2] ⊢ x1 :
1 Int, x2 :1 Int, x3 :0 Int, x4 :1 Int

When a heap is compatible with a term, it is a closing multi-substitution.

Lemma 4.7 (Multi-substitution). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then � ; � ⊢ a{H } : A.

Let us understand the relation H ⊢ ∆; Γ better. The heap H is a list of length |Γ | with the ith

element being xi

qi

7→ Γi ⊢ ai : Ai, where ∆i ; Γi ⊢ ai : Ai and ∆i is a prefix-list of ∆ of length i − 1.

This can be seen as a memory layout where xis correspond to memory locations and ais to the

terms stored in the those locations. The usage qi then is the number of ways the location xi can be

referenced. We represent this as a memory graph.

4.4 Graphical and algebraic views of the heap
A well-formed heap H where H ⊢ ∆; Γ can be viewed as a weighted directed acyclic graphGH ,Γ . Let

H contain n assignments with the jth one being xj
qj

7→ Γj ⊢ aj : Aj . Then,GH ,Γ is a DAG with (n + 1)
nodes, n nodes corresponding to the n variables in H and one extra node for Γ, referred to as the

source node. Let vj be the node corresponding to x j and vд be the source node. Note that Γj only

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 13

contains variables x1 through x j−1. For xi :
qji Ai in Γj , add an edge with weight w(vj ,vi) := qji

from vj to vi . We do this for all nodes, including vд . This gives us a DAG with the topological

ordering vд,vn,vn−1, . . . ,v2,v1.
For example 4.6, we have the following memory graph:

vд v4 v3 v2 v1
1

1

1

1

1

1

1

2

For a well-formed heap, we can express the quantities of the assignments in terms of the edge

weights of its memory graph. Let us define the length of a path to be the product of the weights

along the path. Then, qj is the sum of the lengths of all paths from vд to vj . Note that this is so
for the example graph. A path p from vд to vj represents a chain of references, with the last one

being pointed at vj . The length of p shows how many times this path is used to reference vj . The
sum of the lengths of all the paths from vд to vj then gives a (static) count of the total number of

times location vj is referenced. And this is equal to qj , the usage of the assignment for vj in the

heap. This means that the usage of an assignment is equal to the (static) count of the number of

times the concerned location is referenced. Henceforth, we also refer to qj as the count of vj and
call the property count balance. Below, we present an algebraic formalization of this property of

well-formed heaps.

Notation 4.8. We use 0 to denote a vector of 0’s of length n (when n is clear from the context). For

a well-formed heap H containing n assignments of the form xi

qi

7→ Γi ⊢ ai : Ai, we write ⟨H ⟩ to denote

the n × n matrix whose i th row is Γi ⋄0. We call ⟨H ⟩ the transformation matrix corresponding to H .

Matrix operations (over a semiring) are defined in the usual way.

The transformation matrix for example 4.6 is:

©­­­«
0 0 0 0

2 0 0 0

1 1 0 0

0 1 1 0

ª®®®¬
For a well-formed heap H , the matrix ⟨H ⟩ is strictly lower triangular. Note that this is also the

adjacency matrix of the memory graph, excluding node vд . The strict lower triangular property of

the matrix corresponds to acyclicity of the graph. The count balance property can now be stated.

Lemma 4.9 (Count Balance). If H ⊢ ∆; Γ, then H = H × ⟨H ⟩ + Γ.

For example 4.6, we can check that H =
(
8 3 1 1

)
satisfies the above equation. Let us

understand this equation. For a node vi in GH ,Γ , we can express the count qi in terms of the

counts of the incoming neighbors and the weights of the corresponding edges. We have, qi =
Σj qjw(vj ,vi) + w(vд,vi). The right-hand side of this equation represents the static estimate of

demand, the amount of resources we shall need while the left-hand side represents the static

, Vol. 1, No. 1, Article . Publication date: July 2020.

14 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

estimate of supply, the amount of resources we shall have. So H ⊢ ∆; Γ is a static guarantee that the

heap H shall supply the resource demands of the context Γ.

4.5 Soundness
Now we can state and prove our desired soundness theorem. But to prove this, we need the

following lemma.

Lemma 4.10 (Invariance). If H ⊢ ∆; Γ1 + q ·Γ2 and ∆ ; Γ2 ⊢ a : A and q = q′ + 1 for some q′, then
either a is a value or there exists Γ3, H

′
, u′, Γ0 and a′ such that for sufficiently fresh S :

• [H] a ⇒S [H
′
; u′ ; Γ0] a′

• H
′ ⊢ ∆, ⌊Γ0⌋; (Γ1, 0·Γ0) + q ·Γ3

• ∆, ⌊Γ0⌋ ; Γ3 ⊢ a
′
: A

• Γ3 + u′ + 0⋄ Γ0 × ⟨H ′⟩ = Γ2 ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ0

Theorem 4.11 (Soundness). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then either a is a value or there exists

Γ′, H ′
, u′, Γ0 such that for sufficiently fresh S :

• [H] a ⇒S [H
′
; u′ ; Γ0] a′

• H
′ ⊢ ∆, ⌊Γ0⌋; Γ

′

• ∆, ⌊Γ0⌋ ; Γ
′ ⊢ a′ : A

• Γ′ + u′ + 0⋄ Γ0 × ⟨H ′⟩ = Γ ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ0

In words, the soundness theorem states that our computations can go forward with the available

resources without ever getting stuck. Note that as the term a steps to a′, the typing context changes
from Γ to Γ′. This is to be expected because during the step, resources from the heap may have been

consumed or new resources may have been added. For example, [x
1

7→ unit]x ⇒ [x
0

7→ unit]unit.
Though the typing context may change, the new context must be compatible with the new heap.

This means that at every step, the dynamics of our language respects our static guarantee on

resources. As the computation progresses, the weights in the memory graph change but the count

balance property is maintained.

Furthermore, the old context and the new context are related by the equation stated above. Let

us look at this equation closely:

Γ′ + u′ + 0⋄ Γ0 × ⟨H ′⟩

= Γ ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ0

We can understand this equation through the following analogy. The contexts can be seen engaged

in a transaction with the heap. The heap pays the context 0⋄ Γ0 and gets 0⋄ Γ0 × ⟨H ′⟩ resources in

return. The context pays the heap u′ and gets u′ × ⟨H ′⟩ resources in return. The equation is the

“balance sheet" of this transaction.

The ordinary preservation and progress lemma can be derived from this soundness theorem

using bisimilarity of the two reduction relations and the multi-substitution property. We sketch the

proofs below.

Corollary 4.12. If � ; � ⊢ a : A and a ; b, then � ; � ⊢ b : A.

Proof. Since a ; b, for sufficiently fresh S , we have, [�] a ⇒S [H
′
; u′ ; Γ′] b′ and b

′{H ′} = b,

by bisimilarity. Since � ; � ⊢ a : A and � ⊢ �;� and a is not a value, we have H ,∆, Γ, Γ0,Q,a
′
such

that H ⊢ ∆; Γ and [�] a ⇒S [H ; u ; Γ0] a′ and ∆ ; Γ ⊢ a′ : A, by soundness.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 15

Now, since [�] a ⇒S [H
′
; u′ ; Γ′] b′ and [�] a ⇒S [H ; u ; Γ0] a′, determinism gives us b

′{H ′} =

a
′{H }. Since H ⊢ ∆; Γ and ∆ ; Γ ⊢ a

′
: A, by multi-substitution, we have, � ; � ⊢ a

′{H } : A. But

a
′{H } = b

′{H ′} and b
′{H ′} = b. Therefore, � ; � ⊢ b : A. □

Corollary 4.13. If � ; � ⊢ a : A, then a is a value or there exists b, such that a ; b.

Proof. Since � ; � ⊢ a : A and � ⊢ �;�, we have either a is a value or there exists H , Γ0,Q,a
′

such that [�] a ⇒S [H ; u ; Γ0] a′. By bisimilarity, a ; a
′{H }. □

Next we use the soundness theorem to derive some useful properties about usage.

5 APPLICATIONS AND EXTENSIONS
5.1 Applications
Till now, we have developed our theory over an arbitrary partially-ordered semiring. But an

arbitrary semiring is too general a structure for deriving theorems we are interested in. For example,

the set {0, 1} with 1+ 1 = 0 and all other operations defined in the usual way is also a semiring. But

such a semiring does not quite capture our notion of usage since 0 is supposed to mean no usage

and 1 (whenever 1 , 0) is supposed to mean some usage. So we restrict our attention to a special

kind of semirings. Semirings which satisfy q1 + q2 = 0 =⇒ q1 = q2 = 0 are called zerosumfree. We

have the following property for usage tracking with such semirings.

Lemma 5.1. If [H] a ⇒S [H
′
; u′ ; Γ0] a′ and xi

0

7→ Γi ⊢ ai : Ai ∈ H , then the component u′(xi) = 0

and xi

0

7→ Γi ⊢ ai : Ai ∈ H ′
.

This means that locations with count 0 cannot be referenced during computation. The count for

such locations also never changes. Now, if they cannot be referenced, what they contain should not

matter. This is true, as we see here:

Lemma 5.2. If [H1, xi
0

7→ Γi ⊢ a : Ai,H2] b ⇒S [H
′
1
, xi

0

7→ Γi ⊢ a : Ai,H
′
2
; u′ ; Γ0] b′, then [H1, xi

0

7→

Γi ⊢ a
′
: Ai,H2] b ⇒S [H

′
1
, xi

0

7→ Γi ⊢ a
′
: Ai,H

′
2
; u′ ; Γ0] b′.

Let us look at locations with count 0 in memory graphs. The length of any path from the source

node to such a node must be 0. But all the edge-weights in such a path may be non-zero. This

is so because we allow the product of two non-zero elements to be 0. If we disallow this, then

there is no path from the source node to such a node (0 weight edges are omitted). If we think

in terms of resource usage, it makes sense to place such a restriction. Semirings which satisfy

q1 · q2 = 0 =⇒ q1 = 0 or q2 = 0 are called entire. Henceforth, we restrict ourselves to entire,

zerosumfree semirings.

Lemma 5.3. If H ⊢ ∆; Γ and xi

0

7→ Γi ⊢ ai : Ai ∈ H , then vi belongs to a isolated subgraph (of GH ,Γ)

that does not contain the source node.

Along with the soundness theorem, this means that irrelevant resources are never used during

computation.

Let us now turn to linearity. For linearity to be meaningful, we need to put more restrictions on

our semirings. As an example, consider 1 + 1 = 1 in the boolean semiring. This goes against our

notion of linearity. So we add the following restrictions:

• q1 + q2 = 1 =⇒ q1 = 1 and q2 = 0 or q1 = 0 and q2 = 1

• q1 · q2 = 1 =⇒ q1 = q2 = 1

We call such semirings linear. For entire, zerosumfree, linear semirings; we have the following

property:

, Vol. 1, No. 1, Article . Publication date: July 2020.

16 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

Lemma 5.4. If H ⊢ ∆; Γ and xi

1

7→ Γi ⊢ ai : Ai ∈ H , then in GH ,Γ , there is a single path p from the

source node to vi and all the weights on p are 1. Further, for any node vj on p, the subpath is the only

path from the source node to vj .

Along with the soundness theorem, this gives us a quantitative version of the single pointer

property. In words, it means that there is one and only one way to reference a linear resource; any

resource along the way has a single pointer to it. This property would enable one to carry out safe

in-place update for linear resources.

5.2 Sub-usage
Until now, we have only considered exact usage. But since we work with a partially-ordered

semiring, we may allow our contexts to provide more resources than is necessary. Sub-usaging, as

it is commonly referred to, allows us to put more resources in our context.

∆ ; Γ ⊢ a : A (Additional rule)

ST-Sub

∆ ; Γ1 ⊢ a : A Γ1 ≤ Γ2

∆ ; Γ2 ⊢ a : A

Notation 5.5 (Context sub-usage). We write Γ1 ≤ Γ2 to mean that, for every x:
q1
A ∈ Γ1, there

exists x:
q2
A ∈ Γ2 with q1 ≤ q2. Furthermore, ⌊Γ1⌋ = ⌊Γ2⌋. We write H1 ≤ H2 to mean that H1 and H2

have the same underlying heap, but with different usage vectors, where H1 ≤ H2.

Our ordinary stepping relation does not need to change but the heap based reduction relation

needs the following rule.

Small-Sub

[H1] a ⇒S [H
′
; u′ ; Γ] a′ H1 ≤ H2

[H2] a ⇒S [H
′
; u′ ; Γ] a′

All the lemma and theorems stated till now hold true, as is, other than than the conservation

and the soundness (and invariance) theorems, which need the following modification.

Theorem 5.6 (Conservation). If [H] a ⇒∗
S
[H ′

; u′ ; Γ′] a′, then H
′ + u′ ≤ H ⋄ Γ′.

Theorem 5.7 (Soundness). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then either a is a value or there exists Γ′,
H

′
, u′, Γ0 such that for sufficiently fresh S :

• [H] a ⇒S [H
′
; u′ ; Γ0] a′

• H
′ ⊢ ∆, ⌊Γ0⌋; Γ

′

• ∆, ⌊Γ0⌋ ; Γ
′ ⊢ a′ : A

• Γ′ + u′ + 0⋄ Γ0 × ⟨H ′⟩ ≤ Γ ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ0

This is along expected lines, since with sub-usaging, we don’t use all the provided resources. So

the exact equality is replaced by less than or equal relation. But if 0 and 1 are minimal elements

with respect to this relation, all our previous observations about irrelevant and linear usage hold.

With this, we move on to dependent types.

6 DEPENDENT QUANTITATIVE TYPES
Till now, we have only considered simple types, but in this section we extend to dependent types.

First, the syntax: because this section presents a dependently typed version, we combine terms and

types into a single syntactic category.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 17

∆; Γ ⊢ a : A (Typing rules for dependent system (excerpt))

T-sub

∆; Γ1 ⊢ a : A Γ1 ≤ Γ2

∆; Γ2 ⊢ a : A

T-weak

x < dom∆ ∆; Γ1 ⊢ a : B

∆; Γ2 ⊢ A : type

∆, x:A; Γ1, x:
0
A ⊢ a : B

T-conv

∆; Γ1 ⊢ a : A

∆; Γ2 ⊢ B : type A ≡ B

∆; Γ1 ⊢ a : B

T-type

�;� ⊢ type : type

T-var

x < dom∆
∆; Γ ⊢ A : type

∆, x:A; 0·Γ, x:1A ⊢ x : A

T-pi

∆; Γ1 ⊢ A : type
∆, x:A; Γ2, x:

r
A ⊢ B : type

∆; Γ1 + Γ2 ⊢ Πx :qA.B : type

T-lam

∆, x:A; Γ1, x:
q
A ⊢ a : B

∆; Γ2 ⊢ A : type

∆; Γ1 ⊢ λx :
q
A.a : Πx :qA.B

T-app

∆; Γ1 ⊢ a : Πx :qA.B
∆; Γ2 ⊢ b : A

∆; Γ1 + q ·Γ2 ⊢ a b : B{b/x}

T-Unit

�;� ⊢ Unit : type

T-unit

�;� ⊢ unit : Unit

T-UnitElim

∆; Γ1 ⊢ a : Unit
∆; Γ2 ⊢ b : B{unit/y}

∆, y:Unit; Γ3, y:rUnit ⊢ B : type

∆;Γ1 + Γ2 ⊢ let unit = a in b : B{a/y}

Fig. 4. Typing rules for dependent, quantitative type system

terms, types a,b,A,B ::= type
| Πx :qA.B | x | λx :qA.a | a b

| Unit | unit | let unit = a in b
| 2qA | boxq a | let box x = a in b
| A ⊕ B | inj

1
a | inj

2
a | caseq a of b1; b2

| Σx:qA.B | (a, b) | let (x,y) = a in b

6.1 Type system
The rules of this type system, shown in Figure 4 on page 17, are inspired by the Pure Type Systems

of Barendregt [Barendregt 1993]. However, for simplicity, this system includes only a single sort,

type and a single axiom type : type.3 We annotate Barendregt’s system with quantities, as well as

add the unit type, sums, sigma types and the box modality. For space, we only omit the rules for

sums, Σ-types and the box modality.

The key idea of this design is that quantities only count the runtime usage of variables. In a

judgement ∆; Γ ⊢ a : A, the quantities recorded in Γ should be derived only from the parts of a

that are needed during computation. All other uses of these variables, whether in the type A, in

irrelevant parts of a, or in types that appear later in the context, should not contribute to this count.

3
This definition corresponds to λ∗, which is ’inconsistent’ in the sense that all types are inhabited. However, this inconsistency
does not interfere with the syntactic properties of the system that we are interested in as a core for Dependent Haskell.

, Vol. 1, No. 1, Article . Publication date: July 2020.

18 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

This distinction is significant because in a dependently-typed system terms may appear in types.

As a result, the typing rules must ensure that both terms and types are well-formed during type

checking. Therefore, the type system includes premises of the form ∆ ; Γ ⊢ A : type, that hold when
A is a well-formed type. However, usually such type components do not play a role in computation.

What this means for the type system is that any usage of a context to check an irrelevant

component should be multiplied by 0, just like the irrelevant argument in example 3.6. For example,

in the rule for variables, any uses of the context Γ to check the type A are discarded (multiplied by

0) in the resulting derivation. Similarly, in the rule for weakening, we check that the type of the

weakened variable is well-formed using some context Γ2 that is compatible with the Γ1 (same ∆).
But Γ2 doesn’t appear in the result of the rule because, for simplicity, we use the simpler Γ1 instead
of the equivalent Γ1 + 0 ·Γ2. Many rules follow this pattern of checking types with some usage-

unconstrained context, including Γ2 in rule T-conv and rule T-lam, and Γ3 in rule T-UnitElim.This

last rule, implements a form of dependent pattern matching. In this rule, the type of the branch can

observe that the that the eliminated term a is equal to the pattern unit. To support this refinement,

the result type B must type check with a free variable y of an appropriate type.

Note that when we type check types as terms, such as in rule T-pi, we do not use usage-

unconstrained contexts. In these cases, we are reasoning about terms that compute types, so

we cannot throw away any resources (yet). Instead, we add all resources to the resulting usage

context by adding the resources from the two sub-terms together.

Irrelevant quantification. Now consider the quantity r in the rule for checking Π types.

T-pi

∆; Γ1 ⊢ A : type
∆, x:A; Γ2, x:

r
A ⊢ B : type

∆; Γ1 + Γ2 ⊢ Πx :qA.B : type

This quantity records how many times a term of this Π-type uses its argument. We choose to

leave this usage unconstrained in the rule: the body of the type can use this argument as many

times as it wants! This behavior is sound—the bound variable does not leak into the context, so it

doesn’t reflect any actual resource, just a hypothetical one.

With this rule, we may use 0 to represent parametric polymorphism, by modeling them as

irrelevant type arguments. For example, the analogue of the System F type ∀α .α → α , can be

expressed in this system as

Πx :0 type.x
1

−→ x

This type is only well-formed with the unconstrained rule because, even though the annotation

on the variable x is 0, that rule allows x to be used any number of times in the body of the type.

Some versions of irrelevant quantifiers in type theories constrain r to be equal toq, the annotation
of the Π-type [Abel and Scherer 2012; Nuyts et al. 2017]. By coupling the usage of variables in

body of the abstraction with the result type of the Π, these systems rule out the representation of

the type shown above. The benefit for this and other related restrictions is that the systems may

support stronger logical reasoning principles about their irrelevant quantifiers (such as internalized

parametricity).

In this system, we can model this more restricted form of quantifier with the assistance of the

box modality. If, instead of using the type Πx :0A.B, we use the type Πx :120A.B, we can force the

result type to also make no (relevant) use of the argument within B. The box x can be unboxed as

many times as desired, but each unboxing must be used exactly 0 times.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 19

It is this distinction between the types Πx :0A.B and Πx :120A.B that motivates our inclusion

of both the usage annotation on the Π type itself and the modal type 2qA. In the simple type

system, we can derive usage-annotated functions from linear functions and the box modality: there

is no need to annotate any arrow with any quantity other than 1 [Orchard et al. 2019]. However,

in the dependent type system, we gain additional expressiveness from including both features.

Graded Type Theory (GrTT) takes this to the next level by tracking usages both in types and

functions [Moon et al. 2020]. This allows precise control over variable usage while computing in

types that can lead to compile time optimizations, encodings of other systems, and controlling

parametricity in the style of [Nuyts and Devriese 2018].

6.2 Metatheory
We have proven, in Coq, the following properties about the dependently-typed system.

First, well-formed terms have well-formed types. However, the resources used by such types are

unrelated to those of the terms.

Lemma 6.1 (Regularity). If ∆ ; Γ ⊢ a : A then there exists some Γ′ such that ∆ ; Γ′ ⊢ A : type.

Next, we generalize the substitution lemma for the simple version to this system, by propagating

it through the context and type.

Lemma 6.2 (Substitution). If ∆1 ; Γ ⊢ a : A and ∆1, x : A,∆2; Γ1, x :
q
A, Γ2 ⊢ b : B then

∆1,∆2{a/x}; (Γ1 + q ·Γ), Γ2{a/x} ⊢ b{a/x} : B{a/x}.

Furthermore, even though we have an explicit weakening rule in this system, we also show that

we can weaken with a zero-annotated fresh variable any where in the judgement, as long as its

type is well-formed.

Lemma 6.3 (Weakening). If ∆1,∆2; Γ1, Γ2 ⊢ a : A and ∆2; Γ3 ⊢ B : type then ∆1, x :B,∆2; Γ1, x :
0

B, Γ2 ⊢ a : A.

The small-step relation for this language is identical to that of the simply typed version, shown

in Figure 2.

Theorem 6.4 (Preservation). If ∆; Γ ⊢ a : A and a ; a
′
then ∆; Γ ⊢ a′ : A.

Theorem 6.5 (Progress). If �;� ⊢ a : A then either a is a value or there exists some a
′
such that

a ; a
′
.

Now we develop the heap semantics for the dependent version.

6.3 Heap semantics
The step relation a ; a

′
is the same for both simple and dependent types. So can we use the

same heap-based reduction for dependent types? Almost. Since we freshen names in the reduction

relation, we need to pass the types along. In the simply typed version, this was not required since

the types did not depend on terms. But this modification is cosmetic: only to keep the variables

aligned. The new relation looks like [H] a : A ⇒S [H
′
; u′ ; Γ0] a′ : A′

, where A and A′
are dummy

types.

With this new relation, we need to extend our determinism lemma.

Lemma 6.6 (Determinism). If [H1] a : A ⇒S [H
′
; u′ ; Γ′] a′ : A1 and [H2] a : A ⇒S [H

′′
; u′′ ; Γ′′] a′′ :

A2 and ⌊H1⌋ = ⌊H2⌋, then a
′ = a′′ and ⌊H ′⌋ = ⌊H ′′⌋ and A1 = A2.

The bisimilarity remains intact. The multi-substitution lemma changes in the following way:

, Vol. 1, No. 1, Article . Publication date: July 2020.

20 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

[H] a : A ⇒S [H
′
; u′ ; Γ′] a′ : A′

(Small-step, excerpt)

SmallS-Var

[H1, x
(q+1)
7→ Γ ⊢ a : A,H2] x : A ⇒S [H1, x

q

7→ Γ ⊢ a : A,H2 ; 0 |H1 | ⋄1⋄0 |H2 |
; �] a : A

SmallS-AppL

[H] a : A ⇒S∪ fv b [H
′
; u′ ; Γ] a′ : B

[H] a b : A ⇒S [H
′
; u′ ; Γ] a′ b : B

SmallS-App

x < domH ∪ fv b ∪ S

[H] (λy :qA.a) b : A ⇒S [H, x
q
′

7→ Γ ⊢ b : A ; 0 |H | ⋄0 ; x:q
′

A] a{x/y} : A{x/y}

Fig. 5. Heap semantics

Lemma 6.7 (Multi-substitution). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then � ; � ⊢ a{H } : A{H }.

We also have a restricted type substitution lemma.

Lemma 6.8 (Type substitution). If ∆ ; Γ ⊢ a : A, and for sufficiently fresh S , if [H] a : A ⇒S

[H0,H
′
; u′ ; Γ0] a′ : A′

where ⌊H⌋ = ⌊H0⌋, we have A
′{H ′} ≡ A.

Here H ′
denotes the new assignments resulting from the reduction of the term. If we substitute

the assigned terms for these new variables in the type, we get equal types.

We now present the soundness theorem for dependent types:

Theorem 6.9 (Soundness). If H ⊢ ∆; Γ and ∆ ; Γ ⊢ a : A, then either a is a value or there exists Γ′,
H

′
, u′, Γ0,A′

such that for sufficiently fresh S :

• [H] a : A ⇒S [H
′
; u′ ; Γ0] a′ : A′

• H
′ ⊢ ∆, ⌊Γ0⌋; Γ

′

• ∆, ⌊Γ0⌋ ; Γ
′ ⊢ a′ : A′

• Γ′ + u′ + 0⋄ Γ0 × ⟨H ′⟩ ≤ Γ ⋄0 + u′ × ⟨H ′⟩ + 0⋄ Γ0
We can use this soundness theorem to prove preservation and progress. The proof for progress

is the same as the one for the simply typed version. We present the proof for preservation below:

Corollary 6.10. If � ; � ⊢ a : A and a ; b, then � ; � ⊢ b : A.

Proof. Since a ; b, for sufficiently fresh S , we have, [�] a : A ⇒S [H ′
; u′ ; Γ′] b′ : B and

b
′{H ′} = b, by bisimilarity. By type substitution, B{H ′} ≡ A.

Since � ; � ⊢ a : A and � ⊢ �;� and a is not a value, we have H ,∆, Γ, Γ0,Q,a
′,A′

such

that H ⊢ ∆; Γ and [�] a : A ⇒S [H ; u ; Γ0] a′ : A′
and ∆ ; Γ ⊢ a

′
: A

′
, by soundness. Since

[�] a : A ⇒S [H ′
; u′ ; Γ′] b′ : B and [�] a : A ⇒S [H ; u ; Γ0] a′ : A

′
, determinism gives us

b
′{H ′} = a

′{H } and B = A′
.

Since H ⊢ ∆; Γ and ∆ ; Γ ⊢ a
′
: A, by multi-substitution, we have, � ; � ⊢ a

′{H } : A
′{H }.

But a
′{H } = b

′{H ′} and b
′{H ′} = b. Therefore, � ; � ⊢ b : A

′{H }. Further, since B = A′
and

B{H ′} ≡ A, we get A
′{H } ≡ A. Hence, � ; � ⊢ b : A. □

This shows that the ordinary semantics is sound with respect to a resource-aware semantics.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 21

7 DISCUSSION
7.1 Definitional-equivalence and irrelevance
The terms “irrelevance” and “irrelevant quantification” have multiple meanings in the literature.

Our primary focus is on erasability, the ability for terms to quantify over arguments that need not

be present at runtime. However, this terminology often includes compile-time irrelevance, or the

blindness of type equality to such erasable parts of terms. These terms are also related to, but not

the same as, “parametricity” or “parametric quantification”, which characterizes functions that map

equivalent arguments to equivalent results.

One difference between our formulation and a more traditional dependently-typed calculus is

that the conversion rule (rule T-conv) is specified in terms of an abstract equivalence relation

on terms, written A ≡ B. Our proofs about this system work for any relation that satisfies the

following properties.

Definition 7.1. We say that the relation A ≡ B is sound if it:

(1) is equivalence relation,

(2) contains the small step relation, in other words, if a ; a
′
then a ≡ a

′
,

(3) is closed under substitution, in other words, if a1 ≡ a2 then b{a1/x} ≡ b{a2/x} and a1{b/x} ≡

a2{b/x},

(4) is injective for type constructors, for example, if Πx :q1 A1.B1 ≡ Πx :q2 A2.B2 then q1 = q2 and

A1 ≡ A2 and B1 ≡ B2 (and similar for 2qA and A ⊕ B),

(5) and is consistent, in other words, if A ≡ B and both are values, then they have the same head

form.

The standard β-conversion relation, defined as the reflexive, symmetric, transitive and congruent

closure of the step relation, is a sound relation.

However, β-conversion is not the only relation that would work. Dependent type systems with ir-

relevance sometimes erase irrelevant parts of terms before comparing them up to β-equivalence [Bar-
ras and Bernardo 2008]. Alternatively, a typed definition of equivalence, might use the total relation

when equating irrelevant components [Pfenning 2001]. In future work, we hope to show that any

sound definition of equivalence can be coarsened by ignoring irrelevant components in terms

during comparison. We conjecture that such a relation would also satisfy the properties above. In

particular, our results from Section 5 tell us that such coarsening of the equivalence relation is

consistent with evaluation, and therefore contains the step relation.

7.2 Connection to Haskell
The practical, on-the-ground motivation for us in exploring these details of dependent, quantitative

type theory is the development of dependent types for GHC/Haskell [Eisenberg 2016; Gundry 2013;

Weirich et al. 2019, 2017]. Support for linear types [Bernardy et al. 2018] is included with GHC 8.12.

We thus need a way to marry these two features as part of a cohesive whole.

A key ingredient in a successful combination of linear and dependent types for Haskell is to

capitalize on the 0 quantity to mean irrelevant. Previous work [e.g., Weirich et al. 2017] discusses

irrelevant quantification for Dependent Haskell. Irrelevance for Haskell is important for two reasons:

it allows us to retain traditional parametric polymorphism even in the face of dependent types, and

it allows us to be concrete about type erasure. Haskell, with industrial users who care deeply about

performance, must retain its ability to erase types before runtime. By noting where arguments

should be quantified irrelevantly, programmers can indicate where they expect type erasure to take

, Vol. 1, No. 1, Article . Publication date: July 2020.

22 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

place. This will be a user-facing feature: as Eisenberg [2018] explains,
4
users will explicitly denote

whether they want irrelevant quantification or relevant quantification. By marking irrelevant

quantification using 0, irrelevance fits in swimmingly with Haskell’s current story around linear

types.

This current design is essentially an instance of the type system described in this paper, using

the linearity semiring. Users can mark arguments with grades 1 or ω, but a grade of 0 is sometimes

needed internally. Haskell’s kind system supports irrelevance, but not linearity, so the two features

do not yet interact. It is only with dependent types that we need to deploy our brand of quantitative

types. The current structure will be able to migrate to quantitative type theory with little, if any,

backward compatibility trouble for users.

One feature of Haskell’s linear types does cause a small wrinkle, though: Haskell supports

multiplicity polymorphism. An easy example is in the type of map, which is forall m a b. (a
#m-> b) -> [a] #m-> [b]. We see that the function argument to map can be either linear or

unrestricted, and that this choice affects whether the input list is restricted. We cannot support

quantity polymorphism in our type theory, as quantifying over whether or not an argument is

relevant would mean that we could no longer compile a quantity-polymorphic function: would the

compiled function take the argument in a register or not? The solution is to tweak the meaning

of quantity polymorphism slightly: instead of quantifying over all possible quantities, we would

be polymorphic only over quantities q such that 1 ≤ q. That is, we would quantify over only

relevant quantities. This reinterpretation of multiplicity polymorphism avoids the trouble with

static compilation. Furthermore, we see no difficulty in extending our quantitative type theory

with this kind of quantity polymorphism; in the linear Haskell work, multiplicity polymorphism is

nicely straightforward, and we expect the same to be true here, too.

7.3 Abstract Algebraic Generalization
Our type system with graded contexts has operations for addition (Γ1 + Γ2) and scalar multiplication

(q·Γ) defined over an arbitrary partially-ordered semiring. Furthermore, the partial ordering from the

semiring was lifted to contexts Γ1 ≤ Γ2. However, we can provide reasonable alternative definitions

for these operations and relations and all our proofs would still work the same. Here, we layout

what constitutes a reasonable definition.

Our contexts are an example of a general algebraic structure, called a partially-ordered left

semimodule. We look at this abstract structure and some of its properties. Besides our graded

contexts, we shall see that vectors and matrices of quantities also can also be seen through this

abstract mathematical lens. This may help in future extensions and applications of the work

presented in this paper.

We follow Golan [1999] in our terminology and definitions here.

Definition 7.2 (LeftQ-semimodule). Given a semiring (Q,+, ·, 0, 1), we say that a leftQ-semimodule

is a commutative monoid (M, ⊕, 0) along with a left multiplication function _ ⊙ _ : Q ×M → M
such that the following properties hold.

• for q1,q2 ∈ Q andm ∈ M , we have, (q1 + q2) ⊙m = q1 ⊙m ⊕ q2 ⊙m
• for q ∈ Q andm1,m2 ∈ M , we have, q ⊙ (m1 ⊕m2) = q ⊙m1 ⊕ q ⊙m2

• for q1,q2 ∈ Q andm ∈ M , we have, (q1 · q2) ⊙m = q1 ⊙ (q2 ⊙m)

• form ∈ M , we have, 1 ⊙m =m
• for q ∈ Q andm ∈ M , also, 0 ⊙m = q ⊙ 0 = 0.

4
That proposal was not accepted, as it was deemed premature. Even so, the GHC Steering Committee appreciated the

proposal and encouraged it to be re-raised when the time is right.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 23

Graded contexts Γ (with the same ⌊Γ⌋) satisfy this definition, using the operations as defined

before. Another example of a semimodule is Q itself, with ⊕ := + and ⊙ := ·.

In fact, any Cartesian power of Q is also a left semimodule. Given a semiring Q , let Qn
be the set

of n-length vectors of elements of Q . Then Qn
with ⊕ and ⊙ defined componentwise forms a left

Q-semimodule.

Next, let us consider the partial ordering of our contexts. The ordering is basically a lifting of

the partial ordering in the semiring. But in general, a partial order on a left semimodule needs to

satisfy only the following properties.

Definition 7.3 (Partially-ordered left Q-semimodule). Given a partially-ordered semiring (Q, ≤), a
left Q-semimoduleM is said to be partially-ordered iff there exists a partial order ≤M onM such

that the following properties hold.

• form1,m2,m ∈ M , ifm1 ≤M m2, thenm ⊕m1 ≤M m ⊕m2

• for q ∈ Q andm1,m2 ∈ M , ifm1 ≤M m2, then q ⊙m1 ≤M q ⊙m2

• for q1,q2 ∈ M andm ∈ M , if q1 ≤ q2, then q1 ⊙m ≤M q2 ⊙m.

Note that our ordering of contexts Γ satisfy these properties.

We use matrices on several occasions. Matrices can be seen as homomorphisms between semi-

modules. Given a semiring Q , an m × n matrix with elements drawn from Q is basically a Q-
homomorphism from Qm

to Qn
.

For Q-semimodulesM,N , a function _α : M → N is said to be a Q-homomorphism iff:

• form1,m2 ∈ M , we have, (m1 ⊕m2)α =m1α ⊕m2α
• for q ∈ Q andm ∈ M , we have, (q ⊙m)α = q ⊙ (mα).

So the matrix ⟨H ⟩ for a heap H is an endomorphism from Qn
to Qn

where n = |H |. Also, an

identity matrix is an identity homomorphism.

Next, for left Q-semimodulesM,N , P and Q-homomorphisms _α : M → N and _β : N → P , the

composition _(α ◦ β) : M → P can be given by matrix multiplication, α × β . The composition is

associative. And it obeys the identity laws.

This makes the set VQ = {Qn |n ∈ N} with Hom(Qm,Qn) =Mm,n(Q) a category. We worked in

this category. But there might be other such categories worth exploring.

8 RELATEDWORK
8.1 Heap Semantics for Linear Logic
Computational and operational interpretations of linear logic have been explored in several works,

especially in Chirimar et al. [1996], Turner and Wadler [1999]. In Turner and Wadler [1999], the

authors provide a heap-based operational interpretation of linear logic. They show that a call-

by-name calculus enjoys the single pointer property, meaning a linear resource has exactly one

reference while a call-by-need calculus satisfies a weaker version of this property, guaranteeing only

the maintenance of a single pointer. This system considers only linear and unrestricted resources.

We generalize this operational interpretation of linear logic to quantitative type theory by allowing

resources to be drawn from an arbitrary semiring. We derive a quantitative version of the single

pointer property in 5. We can develop a quantitative version of the weak single pointer property

for call-by-need reduction but for this, we need to modify the typing rules to allow sharing of

resources.

8.2 Combining dependent and linear types
Perhaps the earliest work studying the combination of linear and dependent types was proposed in

the form of a categorical model by Bonfante et al. [2001] who were interested in characterizing

, Vol. 1, No. 1, Article . Publication date: July 2020.

24 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

how a linear dependent type system should be designed. A year later, Cervesato and Pfenning

[2002] proposed the Linear Logical Framework (LLF) that combined non-dependent linear types

with dependent types. This paper spurred a number of publications, but most relevant are in the

line of work which extend dependent types with Girard et al. [1992]’s and Dal Lago and Hofmann

[2009]’s bounded linear types. For example, Dal Lago and Gaboardi [2011]’s dlPCF, a sound and

complete system for reasoning about evaluation bounds of PCF programs. Dal lago and Petit [2012]

also show that dlPCF can also be used to reason about call-by-value execution, and Gaboardi

et al. [2013b] develop a similar system called DFuzz for analyzing differential privacy of queries

involving sensitive information. In the same vein, Krishnaswami et al. [2015] show how to combine

non-dependent linear types with dependent types by generalizing Benton [1995]’s linear/non-linear

logic. However, it was Luo [2018] who developed the first fully dependent type theory for linear

logic both in a commutative and a non-commutative formalization.

Quantitative type theory is a newcomer in this area of linear and dependent types.

8.3 Quantitative Type Theory
McBride [2016a] and Atkey [2018] generalize of Girard et al. [1992]’s bounded linear logic (due

to Ghica and Smith [2014]) to use elements of a resource semiring to track the usage of variables.

These systems use a typing judgement of the form: x1 :
ρ1 A1, x2 :

ρ2 A2, . . . , xn :
ρn An ⊢ a :

ρ A,
where ρi s and ρ are elements of a semiring. Roughly speaking, this judgement means that using ρi
copies of xi of type Ai , with i varying from 1 to n, we get ρ copies of a of type A. In contrast, the

typing judgement of our system can only describe the production of one copy of a (i.e. the case

where ρ = 1). To express other quantities of a in our system, one must multiply the context by ρ.
This difference means that the McBride/Atkey systems type check more terms because they may

take advantage of the context in which they will eventually appear. For example, when the current

usage is 0, such as in types, then no usage checking occurs. In contrast, for irrelevant terms, our

system checks that the term is correct in some context, but then discards this information.

While including ρ as part of the judgement is more expressive, it also produces a system that

is brittle. McBride’s system does not admit a substitution lemma as the general case requires the

ability to subtract and divide resources; Atkey repaired this issue by restricting ρ to be either 0 or 1

and requiring a few more properties to hold. Furthermore, neither system includes sub-usaging.

Atkey proved the soundness of his system with respect to a denotational model, whereas our

proofs use a heap-based operational model. As a result, our approach extends to non-normalizing

languages (such as those with type : type).

8.4 Quantities as modalities
Orchard et al. [2019] introduced a system with notion of graded necessity modalities—here called

usage modalities—in a practical programming language with usage polymorphism, indexed types,

and the use of arbitrary semirings. However, their system does not have full dependent types. They

show that usage modalities can be used to encode a large number of graded coeffects in the style of

Gaboardi et al. [2016] and Brunel et al. [2014]. A coeffect captures how a context is used, which is

dual to an effect, and thus, usage modalities are graded comonads rather than graded monads [Fujii

et al. 2016], which capture effects.

Abel and Bernardy [Abel and Bernardy 2020] use a quantitative type system to provide an

abstract view of modalities. Their type system is similar in structure to ours, but its features

and requirements differ. It includes usage and predicative parametric polymorphism but lacks

an extension to dependent types. Their system is also strongly normalizing. Furthermore, Abel

and Bernardy define a relational interpretation for their system and use it to derive parametricity

principles. One property that they derive from this logical relation is that irrelevant arguments

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 25

do not affect computation (or equality). Due to our inclusion of the type : type axiom, this proof

technique is unavailable to us, so we must use more syntactic methods. On the other hand, this

axiom does not play a major role in our proofs: we conjecture that our approach to quantitative

dependent types would work equally well in normalizing type theories.

8.5 Irrelevance and dependent types
There are several approaches to adding irrelevant quantification to dependently-typed languages.

Miquel [2001] first added “implicit” quantification to a Curry-style version of the extended Calculus

of Constructions. In this system, only the relevant parts of the computation may be explicit in

terms, everything else must be implicit. Implicit arguments are thus those that do not appear free in

the body of their abstractions. Barras and Bernardo [2008] showed how to support decidable type

checking by allowing type annotations and other irrelevant subcomponents to appear in terms. In

this setting, irrelevant arguments must not be free in the erasure of the body of their abstractions.

Mishra-Linger and Sheard [2008] extended this approach to pure type systems. More recently,

Weirich et al. [2017] used these ideas as part of a proposal for a core language for Dependent

Haskell.

McBride [2016b], further refined by Atkey [2018], proposed using the 0 element in quantitative

type theory to represent irrelevant quantification in dependent types. We have followed their

design in making the usage of irrelevant variables in the co-domain of Π-types unrestricted in our

system.

9 FUTUREWORK AND CONCLUSIONS
Quantitative Type Theory is a generic framework for expressing the flow and usage of resources in

programs. In this work, we provide a new way of incorporating this framework into dependently-

typed languages, with the goal of supporting both type erasure and linearity in a common system.

In this extension, we get among other things, a new way to look at irrelevance in dependent type

theory.

An ordinary, substitution-based operational semantics does not have the ability to model the

use of resources represented by variables. Therefore, we use a heap semantics to model usage in

our quantitative dependently-typed language. The heap semantics carries out all accounting of

resources during evaluation of terms. We show that the type system is sound with respect to this

heap semantics. Furthermore, since our heap semantics is bisimilar to the ordinary semantics, we

show that the resource agnostic way of evaluation is sound with respect a resource aware semantics.

So a Quantitative Type System is essentially a tool for static program analysis.

There are several things we would like to explore in future, some of which have been stated

already. Can our heap semantics be used to derive parametricity properties using step-indexed

logical relations? What happens when we add imperative features to our language like arrays?

How would a general form of abstract equality upto erasure look like? What happens when we

add multiple different modalities to our language?

The answers to these questions may have practical implications. Currently, languages such as

Haskell, Rust, Idris, etc are experimenting with dependent and linear types, as well as the more

general applications of QTT. Theoretical work in this direction provides guidance in these language

designs and also resolves some practical problems for such programming languages.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant

No. 1521539, and Grant No. 1704041. Any opinions, findings, and conclusions or recommendations

, Vol. 1, No. 1, Article . Publication date: July 2020.

26 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

expressed in this material are those of the author and do not necessarily reflect the views of the

National Science Foundation.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Counting onQuantitative Type Theory (Extended version) 27

REFERENCES
Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A Core Calculus of Dependency. In Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). Association for

Computing Machinery, New York, NY, USA, 147–160. https://doi.org/10.1145/292540.292555

Andreas Abel and Jean-Philippe Bernardy. 2020. A Unified View of Modalities in Type Systems. Proceedings of the ACM on

Programming Languages 4, ICFP (2020). To appear.

Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical

Methods in Computer Science 8, 1 (2012). https://doi.org/10.2168/LMCS-8(1:29)2012

Robert Atkey. 2018. The Syntax and Semantics of Quantitative Type Theory. In LICS ’18: 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science, July 9–12, 2018, Oxford, United Kingdom. https://doi.org/10.1145/3209108.3209189

H. P. Barendregt. 1993. Lambda Calculi with Types. Oxford University Press, Inc., USA, 117–309.

Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent

Types. In Foundations of Software Science and Computational Structures (FOSSACS 2008), Roberto Amadio (Ed.). Springer

Berlin Heidelberg, Budapest, Hungary, 365–379.

P. N. Benton. 1995. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract). In Selected Papers

from the 8th International Workshop on Computer Science Logic (CSL ’94). Springer-Verlag, London, UK, UK, 121–135.

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and Arnaud Spiwack. 2018. Linear

Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program. Lang. 2, POPL (2018), 5:1–5:29.

https://doi.org/10.1145/3158093

Guillaume Bonfante, François Lamarche, and Thomas Streicher. 2001. A model of a dependent linear calculus. Intern report

A01-R-262 || bonfante01c.

Edwin Brady. 2020. Idris 2: Quantitative Type Theory in Action. (Feb. 2020). Draft available from https://www.type-

driven.org.uk/edwinb/idris-2-quantitative-type-theory-in-action.html.

Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. 2014. A Core Quantitative Coeffect Calculus. In

Programming Languages and Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 351–370.

Iliano Cervesato and Frank Pfenning. 2002. A Linear Logical Framework. Information and Computation 179, 1 (2002), 19 –

75.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. 1996. Reference counting as a computational interpretation of linear

logic. Journal of Functional Programming 6, 2 (March 1996), 195–244. https://doi.org/10.1017/S0956796800001660

U. Dal Lago andM. Gaboardi. 2011. Linear Dependent Types and Relative Completeness. In 2011 IEEE 26th Annual Symposium

on Logic in Computer Science. 133–142.

Ugo Dal Lago and Martin Hofmann. 2009. Bounded Linear Logic, Revisited. In Typed Lambda Calculi and Applications,

Pierre-Louis Curien (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80–94.

Ugo Dal lago and Barbara Petit. 2012. Linear Dependent Types in a Call-by-Value Scenario. In Proceedings of the 14th

Symposium on Principles and Practice of Declarative Programming (PPDP ’12). Association for Computing Machinery,

New York, NY, USA, 115–126.

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. Ph.D. Dissertation. University of Pennsylvania.

Richard A. Eisenberg. 2018. Quantifiers for Dependent Haskell. GHC Proposal #102. https://github.com/goldfirere/ghc-

proposals/blob/pi/proposals/0000-pi.rst

Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. 2016. Towards a Formal Theory of Graded Monads. In Foundations

of Software Science and Computation Structures, Bart Jacobs and Christof Löding (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 513–530.

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013a. Linear Dependent Types

for Differential Privacy. In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’13).

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013b. Linear Dependent Types for

Differential Privacy. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’13). Association for Computing Machinery, New York, NY, USA, 357–370.

Marco Gaboardi, Shin-ya Katsumata, Dominic A Orchard, Flavien Breuvart, and Tarmo Uustalu. 2016. Combining effects

and coeffects via grading.. In ICFP. 476–489.

Dan R Ghica and Alex I Smith. 2014. Bounded linear types in a resource semiring. In European Symposium on Programming

Languages and Systems. Springer, 331–350.

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Bounded linear logic: a modular approach to polynomial-time

computability. Theoretical Computer Science 97, 1 (1992), 1–66.

Jonathan S. Golan. 1999. Semirings and their Applications. Springer Netherlands. https://doi.org/10.1007/978-94-015-9333-5

Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde.

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1145/292540.292555
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3158093
https://www.type-driven.org.uk/edwinb/idris-2-quantitative-type-theory-in-action.html
https://www.type-driven.org.uk/edwinb/idris-2-quantitative-type-theory-in-action.html
https://doi.org/10.1017/S0956796800001660
https://github.com/goldfirere/ghc-proposals/blob/pi/proposals/0000-pi.rst
https://github.com/goldfirere/ghc-proposals/blob/pi/proposals/0000-pi.rst
https://doi.org/10.1007/978-94-015-9333-5

28 Pritam Choudhury, Richard A. Eisenberg, Stephanie Weirich, and Harley Eades III

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. 2015. Integrating Linear and Dependent Types. In Proceedings

of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New

York, NY, USA, 17–30.

John Launchbury. 1993. A natural semantics for lazy evaluation. POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT

symposium on Principles of programming languagesl (3 1993), 144–154. https://doi.org/10.1145/158511.158618

Z. Luo. 2018. Substructural Calculi with Dependent Types. To appear at: The LINEARITY Workshop and Trends in Linear

Logic and Applications (2018).

Conor McBride. 2016a. I Got Plenty o’ Nuttin’. Springer International Publishing, Cham, 207–233. https://doi.org/10.1007/978-

3-319-30936-1_12

Conor McBride. 2016b. I Got Plenty o’ Nuttin’. Springer International Publishing, Cham, 207–233.

Alexandre Miquel. 2001. The Implicit Calculus of Constructions Extending Pure Type Systems with an Intersection Type Binder

and Subtyping. Springer Berlin Heidelberg, Berlin, Heidelberg, 344–359. https://doi.org/10.1007/3-540-45413-6_27

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems. In Foundations of Software

Science and Computational Structures (FoSSaCS). Springer.

Benjamin Moon, Harley Eades III, and Dominic Orchard. 2020. Graded Modal Dependent Type Theory (Extended Abstract).

TyDe (May 2020).

Andreas Nuyts and Dominique Devriese. 2018. Degrees of Relatedness: A Unified Framework for Parametricity, Irrelevance,

Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory. In Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich

Grädel (Eds.). ACM, 779–788. https://doi.org/10.1145/3209108.3209119

Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Parametric Quantifiers for Dependent Type Theory. Proc.

ACM Program. Lang. 1, ICFP, Article 32 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110276

Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning with Graded Modal

Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (July 2019), 30 pages. https://doi.org/10.1145/3341714

Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In Proceedings of the 16th

Annual IEEE Symposium on Logic in Computer Science (LICS ’01). IEEE Computer Society, Washington, DC, USA, 221–.

http://dl.acm.org/citation.cfm?id=871816.871845

Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy. In

Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming (ICFP ’10). Association for

Computing Machinery, New York, NY, USA, 157–168. https://doi.org/10.1145/1863543.1863568

David N. Turner and Philip Wadler. 1999. Operational interpretations of linear logic. Theoretical Computer Science 227, 1

(1999), 231 – 248. https://doi.org/10.1016/S0304-3975(99)00054-7

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow Analysis. J. Comput.

Secur. 4, 2–3 (Jan. 1996), 167–187.

Philip Wadler. 1990. Linear types can change the world. In IFIP TC, Vol. 2. 347–359.

Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard A. Eisenberg. 2019. A Role for Dependent Types in

Haskell. Proc. ACM Program. Lang. 3, ICFP, Article 101 (July 2019), 29 pages. https://doi.org/10.1145/3341705

Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A. Eisenberg. 2017. A Specification

for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017), 29 pages. https://doi.org/10.

1145/3110275

James Wood and Robert Atkey. 2020. A Linear Algebra Approach to Linear Metatheory. arXiv:cs.PL/2005.02247

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1145/158511.158618
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3341714
http://dl.acm.org/citation.cfm?id=871816.871845
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1016/S0304-3975(99)00054-7
https://doi.org/10.1145/3341705
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275
http://arxiv.org/abs/cs.PL/2005.02247

	Abstract
	1 Introduction
	2 Algebra of quantities
	2.1 Partially-ordered semiring
	2.2 Examples of partially-ordered semirings

	3 A simple quantitative type system
	3.1 Type system basics
	3.2 Data structures
	3.3 Type soundness
	3.4 Discussion and Variations

	4 Heap semantics
	4.1 Reduction Relation
	4.2 Bisimilarity
	4.3 Heap compatibility
	4.4 Graphical and algebraic views of the heap
	4.5 Soundness

	5 Applications and Extensions
	5.1 Applications
	5.2 Sub-usage

	6 Dependent quantitative types
	6.1 Type system
	6.2 Metatheory
	6.3 Heap semantics

	7 Discussion
	7.1 Definitional-equivalence and irrelevance
	7.2 Connection to Haskell
	7.3 Abstract Algebraic Generalization

	8 Related work
	8.1 Heap Semantics for Linear Logic
	8.2 Combining dependent and linear types
	8.3 Quantitative Type Theory
	8.4 Quantities as modalities
	8.5 Irrelevance and dependent types

	9 Future work and Conclusions
	Acknowledgments
	References

