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data	List	a	
		=	Nil	
		|	Cons	a	(List	a)

List	Int	
List	Bool	
List	(Int	->	Int)	
List	Person

✅

✅

✅

✅
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data	Set	a	=	...

Set	Int	
Set	Bool	
Set	(Int	->	Int)	
Set	Person

✅

✅

❌

✅
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data	BSTSet	a	=	...

BSTSet	Int	
BSTSet	Bool	
BSTSet	(Int	->	Int)	
BSTSet	Person

✅

✅

❌

❌
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size	::	Set	(Int	->	Int)	
size	=	...

✅
#

"����������.��
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�
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idMaybe	::	Maybe	->	Maybe	
idMaybe	x	=	x

❌
"����������.��
��.������.��
�
!"

Why	reject	idMaybe	but	accept	size?

Because	we've	assumed	all	
type	constructors	are	total.
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There	are	many	partial	types:
• Set	a	
• BST	a	
• UArray	a	
• StateT	s	m	a	
• Complex	n	
• SharedArray	a	
• Encrypted	bits	a	
• ...
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Problem	is	more	than	static	checks

instance	Functor	Set	where	
		fmap	=	...

❌
Because	Set's	functions	
are	constrained,	we	can't	

write	this	instance.
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There	are	workarounds.

But	our	idea	is	better.

Related	work	is	in	the	paper.
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Key	idea:	
Datatype	contexts

data	Ord	a	=>	BST	a
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Key	idea:	
Datatype	contexts

>	ghc	BST.hs
BST.hs:	error: 
				Illegal	datatype	context	(use	
DatatypeContexts):	Ord	a	=>
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Key	idea:	
Datatype	contexts

>	ghc	BST.hs
BST.hs:	warning: 
				-XDatatypeContexts	is	deprecated:	It	
was	widely	considered	a	misfeature,	and	has	
been	removed	from	the	Haskell	language.

GHC's	DataCon	module:	
		dcStupidTheta	::	ThetaType	
		--	The	context	of	the	data	type	declaration	
		--						data	Eq	a	=>	T	a	=	...	
		--	"Stupid",	because	the	dictionaries	
		--	aren't	used	for	anything.
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Key	idea:	
Datatype	contexts

But	these	weren't	
always	stupid...
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Key	idea:	
Datatype	contexts

Haskell	1.0	Report	[Hudak	and	Wadler	1990]:

data	c	=>	T	u1	...	un		
"declares	that	a	type	T	t1	...	tn	is	only	

valid	where	c[t1/u1,	...,	tn/un]	holds."

This	text	is	missing	from	the  
Haskell	1.1	Report	[Hudak	et	al.	1991].
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Key	idea:	
Datatype	contexts

Our	goal:  
Bring	back	1990!

(by	giving	datatype	contexts	a	
sensible	semantics)
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Today's	datatype	contexts	
are	indeed	stupid.

data	Ord	a	=>	BST	a	=	Mk	...

f	::	BST	Person	->	BST	Person	
f	x	=	x

✅
#
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Today's	datatype	contexts	
are	indeed	stupid.

data	Ord	a	=>	BST	a	=	Mk	...

seqBST	::	BST	a	->	()	
seqBST	(Mk	{})	=	()

❌
No	instance	for	(Ord	a)	
arising	from	a	use	of	‘Mk’
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Key	idea:	
Datatype	contexts

Our	interpretation: 
An	occurrence	of	BST	a	

requires	an	Ord	a	constraint.
idBST	::	BST	a	->	BST	a	

idBST	::	Ord	a	=>	BST	a	->	BST	a ✅

❌
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idBST	::	BST	a	->	BST	a	

idBST	::	Ord	a	=>	BST	a	->	BST	a ✅

❌

But	the	Ord	a	constraint	is	
redundant	and	annoying,	so	we	

elaborate	the	former	to	the	latter.

f	::	BST	a	->	a	->	a	->	Bool	

f	_	x	y	=	x	<	y ✅

����
���������
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idBST	::	BST	a	->	BST	a	

idBST	::	Ord	a	=>	BST	a	->	BST	a ✅

But	the	Ord	a	constraint	is	
redundant	and	annoying,	so	we	

elaborate	the	former	to	the	latter.

f	::	BST	a	->	a	->	a	->	Bool	

f	_	x	y	=	x	<	y ✅

����
���������
��

✅
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What	about	abstraction?

For	f	a	to	be	a	type,	
we	must	know	any	constraints	are	

satisfied.

a	must	be	in	the	domain	of	f.

f	@	a	must	hold.
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For	t1	t2	to	be	a	type,  
t1	@	t2	must	hold.

For	concrete	types	T,	
T	@	a	is	T's	datatype	

context,	if	any.

BST	@	a	⟺	Ord	a
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P	|	Δ	⊦	τ1	τ2	:	κ2

P	|	Δ	⊦	τ1	:	κ1	→	κ2

P	|	Δ	⊦	τ2	:	κ1

P	|	Δ	⊧	τ1	@	τ2
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class	Functor	f	where	
		fmap	::	(a	->	b)	->	f	a	->	f	b

elaborates	to
class	Functor	f	where	
		fmap	::	(f	@	a,	f	@	b)	
							=>	(a	->	b)	->	f	a	->	f	b

Example

instance	Functor	BST	where	... ✅
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Theory

We	can	compile	our	surface	
language	into	an	internal	

language	without	partiality.
(but	with	dependent	types)



 26

Internal	Language
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Compilation
Key	idea:	

f	a	compiles	into	f	a	d,	
where	(d	:	f	@	a).

To	quantify	(f	:	*	->	*),	we	must	
quantify	over	(c	:	*	->	o),	

where	((@)	f)	=	c.
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Compilation	Example
fmap	::	Functor	f	=>	(a	->	b)	->	f	a	->	f	b 
 

fmap	::	forall	(f	::	*	->	*)	(a	::	*)	(b	::	*). 
								Functor	f	=>	f	@	a	=>	f	@	b	=> 
								(a	->	b)	->	f	a	->	f	b 
 

fmap	:		∀	(c	:	*	->	o)	(f	:	(a:*)	->	c	a	=>	*) 
										(a	:	*)	(b	:	*). 
								Functor	c	f	=>	(d1	:	c	a)	=>	(d2	:	c	b)	=> 
								(a	->	b)	->	f	a	d1	->	f	b	d2

elaborates	to

compiles	to
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Compilation
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Compilation
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Compilation

✅
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Implementation
•in	Hugs	
•of	"research	quality"	

Used	to	test:	
•169	source	files	
•38,000	loc
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Annotation	burden

mapAndUnzipM	::	Monad	m	=>	(a	->	m	(b,	c))	->	
																[a]	->	m	([b],	[c])	
mapAndUnzipM	f	xs	=	sequence	(map	f	xs)	>>=	
																				return	.	unzip

::	m	[(b,	c)]

We	need	a	(m	@	[(b,	c)])	constraint.

An	alternate	implementation	wouldn't.
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Annotation	burden

Out	of	1,934	type	signatures,	20	
needed	extra	annotations.		

These	were	easy.
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Modularity
Types	constrain	implementations.

(A	bit	like	how	Set	operations	need	
an	Ord	or	Hashable	constraint.)

Is	this	a	problem?  
Time	will	tell.
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Related	Work
• Java/Scala's	bounded	polymorphism	
• ML	modules	
• Scott's	E-logic	
• GADTs	are	an	orthogonal	feature	
• Other	approaches	to	partiality	
• Constrained	type	families
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