
Partial	Type	Constructors 
Or,	Making	ad	hoc	datatypes	less	ad	hoc

Richard	A.	Eisenberg	
Tweag	I/O	

rae@richarde.dev	
@RaeHaskell

 1

J.	Garrett	Morris	
University	of	Kansas

Mark	P.	Jones	
Portland	State	University

Friday,	11	September	2020	
MuniHac

data	List	a	
		=	Nil	
		|	Cons	a	(List	a)

List	Int	
List	Bool	
List	(Int	->	Int)	
List	Person

✅

✅

✅

✅

 2

data	Set	a	=	...

Set	Int	
Set	Bool	
Set	(Int	->	Int)	
Set	Person

✅

✅

❌

✅

 3

�
����
�
��
��
����������
�
�
����
�����
��
��
������
�
�����

data	BSTSet	a	=	...

BSTSet	Int	
BSTSet	Bool	
BSTSet	(Int	->	Int)	
BSTSet	Person

✅

✅

❌

❌

 4

���
����

������

���
�
��
��
������
����
�
�
���������
����
�����
��

����
��������.�

�
����
��
����
��

 5

�
����
�
��
��
����������
�
�
����
�����
��
��
������
�
�����

���
����

������

���
�
��
��
������
����
�
�
���������
����
�����
��

size	::	Set	(Int	->	Int)	
size	=	...

✅
#

"����������.��
��.������.��
�
!"

 6

idMaybe	::	Maybe	->	Maybe	
idMaybe	x	=	x

❌
"����������.��
��.������.��
�
!"

Why	reject	idMaybe	but	accept	size?

Because	we've	assumed	all	
type	constructors	are	total.

 7

There	are	many	partial	types:
• Set	a	
• BST	a	
• UArray	a	
• StateT	s	m	a	
• Complex	n	
• SharedArray	a	
• Encrypted	bits	a	
• ...

 8

Problem	is	more	than	static	checks

instance	Functor	Set	where	
		fmap	=	...

❌
Because	Set's	functions	
are	constrained,	we	can't	

write	this	instance.

 9

There	are	workarounds.

But	our	idea	is	better.

Related	work	is	in	the	paper.

 10

Key	idea:	
Datatype	contexts

data	Ord	a	=>	BST	a

��	�
����
����
������
��
������
�������

 11

Key	idea:	
Datatype	contexts

>	ghc	BST.hs
BST.hs:	error: 
				Illegal	datatype	context	(use	
DatatypeContexts):	Ord	a	=>

 12

Key	idea:	
Datatype	contexts

>	ghc	BST.hs
BST.hs:	warning: 
				-XDatatypeContexts	is	deprecated:	It	
was	widely	considered	a	misfeature,	and	has	
been	removed	from	the	Haskell	language.

GHC's	DataCon	module:	
		dcStupidTheta	::	ThetaType	
		--	The	context	of	the	data	type	declaration	
		--						data	Eq	a	=>	T	a	=	...	
		--	"Stupid",	because	the	dictionaries	
		--	aren't	used	for	anything.

 13

Key	idea:	
Datatype	contexts

But	these	weren't	
always	stupid...

 14

Key	idea:	
Datatype	contexts

Haskell	1.0	Report	[Hudak	and	Wadler	1990]:

data	c	=>	T	u1	...	un		
"declares	that	a	type	T	t1	...	tn	is	only	

valid	where	c[t1/u1,	...,	tn/un]	holds."

This	text	is	missing	from	the  
Haskell	1.1	Report	[Hudak	et	al.	1991].

 15

Key	idea:	
Datatype	contexts

Our	goal:  
Bring	back	1990!

(by	giving	datatype	contexts	a	
sensible	semantics)

 16

Today's	datatype	contexts	
are	indeed	stupid.

data	Ord	a	=>	BST	a	=	Mk	...

f	::	BST	Person	->	BST	Person	
f	x	=	x

✅
#

 17

Today's	datatype	contexts	
are	indeed	stupid.

data	Ord	a	=>	BST	a	=	Mk	...

seqBST	::	BST	a	->	()	
seqBST	(Mk	{})	=	()

❌
No	instance	for	(Ord	a)	
arising	from	a	use	of	‘Mk’

 18

Key	idea:	
Datatype	contexts

Our	interpretation: 
An	occurrence	of	BST	a	

requires	an	Ord	a	constraint.
idBST	::	BST	a	->	BST	a	

idBST	::	Ord	a	=>	BST	a	->	BST	a ✅

❌

 19

idBST	::	BST	a	->	BST	a	

idBST	::	Ord	a	=>	BST	a	->	BST	a ✅

❌

But	the	Ord	a	constraint	is	
redundant	and	annoying,	so	we	

elaborate	the	former	to	the	latter.

f	::	BST	a	->	a	->	a	->	Bool	

f	_	x	y	=	x	<	y ✅

����
���������
��

 19

idBST	::	BST	a	->	BST	a	

idBST	::	Ord	a	=>	BST	a	->	BST	a ✅

But	the	Ord	a	constraint	is	
redundant	and	annoying,	so	we	

elaborate	the	former	to	the	latter.

f	::	BST	a	->	a	->	a	->	Bool	

f	_	x	y	=	x	<	y ✅

����
���������
��

✅

 20

What	about	abstraction?

For	f	a	to	be	a	type,	
we	must	know	any	constraints	are	

satisfied.

a	must	be	in	the	domain	of	f.

f	@	a	must	hold.

 21

For	t1	t2	to	be	a	type,  
t1	@	t2	must	hold.

For	concrete	types	T,	
T	@	a	is	T's	datatype	

context,	if	any.

BST	@	a	⟺	Ord	a

 22

P	|	Δ	⊦	τ1	τ2	:	κ2

P	|	Δ	⊦	τ1	:	κ1	→	κ2

P	|	Δ	⊦	τ2	:	κ1

P	|	Δ	⊧	τ1	@	τ2

 24

class	Functor	f	where	
		fmap	::	(a	->	b)	->	f	a	->	f	b

elaborates	to
class	Functor	f	where	
		fmap	::	(f	@	a,	f	@	b)	
							=>	(a	->	b)	->	f	a	->	f	b

Example

instance	Functor	BST	where	... ✅

 25

Theory

We	can	compile	our	surface	
language	into	an	internal	

language	without	partiality.
(but	with	dependent	types)

 26

Internal	Language

 27

Compilation
Key	idea:	

f	a	compiles	into	f	a	d,	
where	(d	:	f	@	a).

To	quantify	(f	:	*	->	*),	we	must	
quantify	over	(c	:	*	->	o),	

where	((@)	f)	=	c.

 28

Compilation	Example
fmap	::	Functor	f	=>	(a	->	b)	->	f	a	->	f	b 
 

fmap	::	forall	(f	::	*	->	*)	(a	::	*)	(b	::	*). 
								Functor	f	=>	f	@	a	=>	f	@	b	=> 
								(a	->	b)	->	f	a	->	f	b 
 

fmap	:		∀	(c	:	*	->	o)	(f	:	(a:*)	->	c	a	=>	*) 
										(a	:	*)	(b	:	*). 
								Functor	c	f	=>	(d1	:	c	a)	=>	(d2	:	c	b)	=> 
								(a	->	b)	->	f	a	d1	->	f	b	d2

elaborates	to

compiles	to

 29

Compilation

 30

Compilation

 30

Compilation

✅

 31

Implementation
•in	Hugs	
•of	"research	quality"	

Used	to	test:	
•169	source	files	
•38,000	loc

 32

Annotation	burden

mapAndUnzipM	::	Monad	m	=>	(a	->	m	(b,	c))	->	
																[a]	->	m	([b],	[c])	
mapAndUnzipM	f	xs	=	sequence	(map	f	xs)	>>=	
																				return	.	unzip

::	m	[(b,	c)]

We	need	a	(m	@	[(b,	c)])	constraint.

An	alternate	implementation	wouldn't.

 33

Annotation	burden

Out	of	1,934	type	signatures,	20	
needed	extra	annotations.		

These	were	easy.

 34

Modularity
Types	constrain	implementations.

(A	bit	like	how	Set	operations	need	
an	Ord	or	Hashable	constraint.)

Is	this	a	problem?  
Time	will	tell.

 35

Related	Work
• Java/Scala's	bounded	polymorphism	
• ML	modules	
• Scott's	E-logic	
• GADTs	are	an	orthogonal	feature	
• Other	approaches	to	partiality	
• Constrained	type	families

Partial	Type	Constructors 
Or,	Making	ad	hoc	datatypes	less	ad	hoc

Richard	A.	Eisenberg	
Tweag	I/O	

rae@richarde.dev	
@RaeHaskell

 36

J.	Garrett	Morris	
University	of	Kansas

Mark	P.	Jones	
Portland	State	University

Friday,	11	September	2020	
MuniHac

