

Partial Type Constructors Or, Making ad hoc datatypes less ad hoc

Mark P. Jones Portland State University J. Garrett Morris University of Kansas

Richard A. Eisenberg Tweag I/O rae@richarde.dev @RaeHaskell

Friday, 11 September 2020 MuniHac

data List a = Nil Cons a (List a)

List Int List Bool List (Int -> Int) List Person

data Set a = ...

Sets make sense only for elements with an equality relation.

Set Int
Set Bool
Set (Int -> Int)
Set Person

data BSTSet a = ...

Binary search trees make sense only for elements with a total order.

BSTSet Int BSTSet Bool BSTSet (Int -> Int) BSTSet Person No person is greater than another.

"But nothing can go wrong here!"

size :: Set (Int -> Int) size = ...

Binary search trees make sense only for elements with a total order.

Sets make sense only for elements with an equality relation.

 \checkmark

idMaybe :: Maybe -> Maybe idMaybe x = x

"But nothing can go wrong here!" Why reject idMaybe but accept size? Because we've assumed all type constructors are total.

There are many partial types:

- Set a
- BST a
- UArray a
- StateT s m a
- Complex n
- SharedArray a
- Encrypted bits a

Problem is more than static checks

instance Functor Set where fmap = ...

Because Set's functions are constrained, we can't write this instance.

There are workarounds. But our idea is better. Related work is in the paper.

Key idea: Datatype contexts data Ord a => BST a BST a is a type only when ord a holds.

> ghc BST.hs

BST.hs: error:

Illegal datatype context (use
DatatypeContexts): Ord a =>

> ghc BST.hs BST.hs: warning:

-XDatatypeContexts is deprecated: It was widely considered a misfeature, and has been removed from the Haskell language.

GHC's DataCon module:

dcStupidTheta :: ThetaType

-- The context of the data type declaration

-- data Eq a => T a = \dots

- -- "Stupid", because the dictionaries
- -- aren't used for anything.

But these weren't always stupid...

This text is missing from the Haskell 1.1 Report [Hudak et al. 1991].

Key idea: Datatype contexts Our goal: Bring back 1990! (by giving datatype contexts a sensible semantics)

Today's datatype contexts are indeed stupid.

data Ord a => BST a = Mk ...
f :: BST Person -> BST Person
f x = x

Today's datatype contexts are indeed stupid.

data Ord a => BST a = Mk ...

seqBST :: BST a -> ()
seqBST (Mk {}) = ()

No instance for (Ord a) arising from a use of 'Mk'

Key idea: Datatype contexts Our interpretation: An occurrence of BST a requires an Ord a constraint. idBST :: BST a -> BST a idBST :: Ord a => BST a -> BST a

idBST :: BST a -> BST a idBST :: Ord a => BST a -> BST a

But the Ord a constraint is redundant and annoying, so we elaborate the former to the latter.

f :: BST
$$a \rightarrow a \rightarrow a \rightarrow Bool$$

f x y = x < y

ord a is implied.

But the Ord a constraint is redundant and annoying, so we elaborate the former to the latter.

f :: BST a -> a -> a -> Bool
f _ x y = x < y
Ord a is implied.</pre>

rweag

What about abstraction?

For f a to be a type, we must know any constraints are satisfied.

a must be in the domain of f. f @ a must hold.

For t_1 t_2 to be a type, $t_1 \bigcirc t_2$ must hold.

For concrete types T, T @ a is T's datatype context, if any.

 $\begin{array}{ccc} \mathsf{BST} & \texttt{O} & \mathsf{a} \longleftrightarrow \mathsf{Ord} & \mathsf{a} \\ \mathsf{fweag} \end{array}$

$\begin{array}{c} P \mid \Delta \vdash \tau_{1} : \kappa_{1} \rightarrow \kappa_{2} \\ P \mid \Delta \vdash \tau_{2} : \kappa_{1} \\ P \mid \Delta \models \tau_{1} \textcircled{O} \tau_{2} \end{array}$

 $\mathsf{P} \ \Delta \vdash \tau_1 \tau_2 : \mathsf{K}_2$

Example

class Functor f where
 fmap :: (a -> b) -> f a -> f b

elaborates to

class Functor f where
 fmap :: (f @ a, f @ b)
 => (a -> b) -> f a -> f b

instance Functor BST where ...

Theory

We can compile our surface language into an internal language without partiality. (but with dependent types)

Internal Language

Kinds Types

Evidence Expressions

$$\kappa ::= s \mid (\alpha:\kappa_{1}) \to \kappa_{2} \mid (\delta:\pi) \Rightarrow \kappa \quad \text{Ty}$$

$$\tau, \pi ::= C \mid \alpha \mid \tau_{1} \tau_{2} \mid \tau v \quad \text{Ty}$$

$$\mid \forall \alpha:\kappa.\tau \mid (\delta:\pi) \Rightarrow \tau \quad \text{Ev}$$

$$v ::= \delta \mid \diamond \mid \dots \quad \text{Ter}$$

$$E ::= x \mid \lambda x:\tau.E \mid E_{1} E_{2} \mid \lambda \delta:\pi.E \quad \text{Sof}$$

$$\mid Ev \mid \Lambda \alpha:\kappa.E \mid E\tau \quad \text{Kin}$$

$$Ty$$

pe vars $\alpha, \ell ::= \ldots$ idence vars $\delta ::= \dots$ rm vars rts Typing env's $\Gamma ::= \epsilon | \Gamma, x:\tau$

pe constants $C, L ::= (\rightarrow) | \top_{\kappa} | \dots$ $x ::= \ldots$ s ::= ★ | o nding env's $\Delta ::= \epsilon \mid \Delta, \alpha:\kappa \mid \Delta, \delta:\pi$

:*π*

$$\frac{\Delta \vdash_{i} \tau_{1} : (\alpha:\kappa_{1}) \to \kappa_{2} \quad \Delta \vdash_{i} \tau_{2} : \kappa_{1}}{\Delta \vdash_{i} \tau_{1} \tau_{2} : [\tau_{2}/\alpha]\kappa_{2}} \qquad \frac{\Delta \vdash_{i} \tau : (\delta:\pi) \Longrightarrow \kappa \quad \Delta \vdash_{i} v}{\Delta \vdash_{i} \tau v : [v/\delta]\kappa}$$

 $\Delta \vdash_i \kappa_1$ kind $\Delta, \alpha:\kappa_1 \vdash_i \kappa_2$ kind $\Delta \vdash_i (\alpha:\kappa_1) \rightarrow \kappa_2$ kind

$$\frac{\Delta \vdash_{i} \pi : \circ \quad \Delta, \delta : \pi \vdash_{i} \kappa \text{ kind}}{\Delta \vdash_{i} (\delta : \pi) \Rightarrow \kappa \text{ kind}}$$

Compilation

Key idea:
f a compiles into f a d,
where (d : f @ a).

To quantify (f : * -> *), we must quantify over (c : * -> o), where ((@) f) = c.

YWEAG

Compilation Example

fmap :: Functor f => (a -> b) -> f a -> f b

elaborates to

fmap :: forall (f :: * -> *) (a :: *) (b :: *).
 Functor f => f @ a => f @ b =>
 (a -> b) -> f a -> f b
 compiles to

$\Delta \sim \Delta'; \mu$ Complation

 $\Delta \rightsquigarrow \Delta'; \mu \quad \kappa; \epsilon \rightsquigarrow \kappa'; \psi$ $\Delta, \alpha: \kappa \rightsquigarrow \Delta', \psi, \alpha: \kappa'; \mu, \alpha \mapsto \psi$ $\epsilon \rightsquigarrow \epsilon; \epsilon$ $\kappa; \psi \rightsquigarrow \kappa;' \psi'$ $\kappa_1; \epsilon \rightsquigarrow \kappa'_1; \psi_1 \quad \psi' = \psi, \psi_1, \alpha: \kappa'_1$ $\Delta \mid P \rightsquigarrow \Delta'; \mu$ $\kappa_2; \psi' \rightsquigarrow \kappa'_2; \psi_2 \quad \psi'_2 = \ell: (\forall \psi. \forall \psi_1. \kappa'_1 \to o), \psi_2$ $\Delta \mid P \rightsquigarrow \Delta'; \mu \quad \Delta \mid P \vdash \pi \text{ pred } \rightsquigarrow_{\mu} \pi'$ $\Delta \rightsquigarrow \Delta'; \mu$ $\star; \psi \rightsquigarrow \star; \epsilon \qquad \kappa_1 \rightarrow \kappa_2; \psi \rightsquigarrow \forall \psi_1.(\alpha:\kappa_1') \rightarrow \ell \operatorname{dom}(\psi) \operatorname{dom}(\psi_1) \alpha \Longrightarrow \kappa_2'; \psi_2'$ $\Delta \mid P, \pi \rightsquigarrow \Delta', \delta:\pi'; \mu, \pi \mapsto \delta$ $\Delta \mid \epsilon \rightsquigarrow \Delta'; \mu$ $P \Vdash \pi \rightsquigarrow_{\mu} v$ $P \mid \Delta; \Gamma \vdash E : \sigma \rightsquigarrow_{\mu} \overline{E'}$ $\pi \mapsto \delta \in \mu \qquad \text{solve}(\pi) \rightsquigarrow v$ $P \Vdash \pi \rightsquigarrow_{\mu} \delta \qquad P \Vdash \pi \rightsquigarrow_{\mu} v$ $x: \sigma \in \Gamma$ $P \mid \Delta; \Gamma \vdash x : \sigma \rightsquigarrow_{\mu} x$ $P \mid \Delta \vdash \pi \text{ pred} \rightsquigarrow_{\mu} \pi'$ $P \mid \Delta; \Gamma \vdash \overline{E_1} : \sigma \rightsquigarrow_{\mu} E'_1 \quad P \mid \Delta \vdash \sigma : \star \rightsquigarrow_{\mu} \tau'; \overline{\tau''} \quad P \mid \Delta; \Gamma, x: \sigma \vdash E_2 : \tau \rightsquigarrow_{\mu} E'_2$ $P \mid \Delta \vdash \tau_1 : \kappa_1 \longrightarrow \kappa_2 \rightsquigarrow_{\mu} \tau'_1; \pi, \overline{\tau} \quad P \mid \Delta \vdash \tau_2 : \kappa_1 \rightsquigarrow_{\mu} \tau'_2; \overline{\tau'}$ $P \mid \Delta; \Gamma \vdash \text{let } x = E_1 \text{ in } E_2 : \tau \rightsquigarrow_{\mu} (\lambda x : \tau' \cdot E_2') E_1'$ $P \mid \Delta \vdash \tau_1 @ \tau_2 \text{ pred} \rightsquigarrow_{\mu} \pi \overline{\tau'} \tau_2'$ $P \mid \Delta; \Gamma \vdash E_1 : \tau_1 \to \tau_2 \leadsto_{\mu} E'_1 \quad P \mid \Delta; \Gamma \vdash E_2 : \tau_1 \leadsto_{\mu} E'_2$ $L: \overline{\kappa_i} \rightarrow \text{pred} \quad P \mid \Delta \vdash \tau_i : \kappa_i \rightsquigarrow_{\mu} \tau_i'; \overline{\tau_i''}$ $P \mid \Delta; \Gamma \vdash E_1 E_2 : \tau_2 \rightsquigarrow_{\mu} E'_1 E'_2$ $P \mid \Delta \vdash L \overline{\tau_i} \text{ pred} \rightsquigarrow_{\mu} L \overline{\tau''} \overline{\tau'}$ $P \mid \Delta; \Gamma, x:\tau_1 \vdash E: \tau_2 \rightsquigarrow_{\mu} E' \quad P \mid \Delta \vdash \tau_1 \rightarrow \tau_2: \star \rightsquigarrow_{\mu} \tau_1' \rightarrow \tau_2'; \overline{\tau''}$ $P \mid \Delta; \Gamma \vdash \lambda x.E : \tau_1 \rightarrow \tau_2 \rightsquigarrow_{\mu} \lambda x: \tau'_1.E'$ $P \mid \Delta \vdash \sigma : \kappa \rightsquigarrow_{\mu} \tau; \overline{\tau'}$ $P \mid \Delta; \Gamma \vdash E : \pi \Longrightarrow \rho \leadsto_{\mu} E' \quad P \Vdash \pi \leadsto_{\mu} v$ $\alpha: \kappa \in \Delta \quad \alpha \mapsto \psi \in \mu$ $C:\kappa$ $P \mid \Delta; \Gamma \vdash E : \rho \leadsto_{\mu} E' v$ $P \mid \Delta \vdash \alpha : \kappa \rightsquigarrow_{\mu} \alpha; dom(\psi) \qquad P \mid \Delta \vdash C : \kappa \rightsquigarrow_{\mu} C; lookup(C)$ $P \mid \Delta \vdash \pi \text{ pred} \rightsquigarrow_{\mu} \pi' \quad P, \pi \mid \Delta; \Gamma \vdash E : \rho \rightsquigarrow_{\mu, \pi \mapsto \delta} E'$ $\kappa; \epsilon \rightsquigarrow \kappa'; \psi \quad P \mid \Delta, \alpha: \kappa \vdash \sigma : \star \rightsquigarrow_{\mu, \alpha \mapsto \psi} \tau; \overline{\tau}$ $P \mid \Delta; \Gamma \vdash E : \pi \Longrightarrow \rho \rightsquigarrow_{\mu} \lambda \delta : \pi'.E'$ $P \mid \Delta \vdash \forall \alpha : \kappa . \sigma : \star \leadsto_{\mu} \forall \psi . \forall \alpha : \kappa' . \tau; \epsilon$ $P \mid \Delta; \Gamma \vdash E : \forall \alpha : \kappa . \sigma \rightsquigarrow_{\mu} E' \quad P \mid \Delta \vdash \tau : \kappa \rightsquigarrow_{\mu} \tau''; \overline{\tau}$ $P \mid \Delta; \Gamma \vdash E : [\tau/\alpha] \sigma \rightsquigarrow_{\mu} E' \overline{\tau} \tau'$ $P \mid \Delta \vdash \tau_1 : \kappa_1 \to \kappa_2 \rightsquigarrow_{\mu} \tau'_1; \overline{\tau} \quad P \mid \Delta \vdash \tau_2 : \kappa_1 \rightsquigarrow_{\mu} \tau'_2; \overline{\tau'}$ $P \Vdash \tau_1 @ \tau_2 \rightsquigarrow_{\mu} v \quad \overline{\tau''} = [\tau_0 \,\overline{\tau'} \,\tau_2' \mid \tau_0 \leftarrow \mathsf{tail}(\overline{\tau})]$ $\kappa; \epsilon \rightsquigarrow \kappa'; \psi \quad P \mid \Delta, \alpha:\kappa; \Gamma \vdash E: \sigma \rightsquigarrow_{\mu, \alpha \mapsto \psi} E'$ $P \mid \Delta \vdash \tau_1 \tau_2 : \kappa_2 \rightsquigarrow_{\mu} \tau'_1 \overline{\tau'} \tau'_2 \upsilon; \overline{\tau''}$ $P \mid \Delta; \Gamma \vdash E : \forall \alpha: \kappa. \sigma \rightsquigarrow_{\mu} \Lambda \psi. \Lambda \alpha: \kappa'. E'$ $P \mid \Delta \vdash \pi \text{ pred} \rightsquigarrow_{\mu} \pi' \quad P, \pi \mid \Delta \vdash \rho : \bigstar \rightsquigarrow_{\mu, \pi \mapsto \delta} \tau; \overline{\tau}$ $P \mid \Delta \vdash \pi \Longrightarrow \rho : \star \leadsto_{\mu} (\delta : \pi') \Longrightarrow \tau; \epsilon$ 29

Compilation

THEOREM 8 (COMPILATION). If $\epsilon \mid \epsilon; \epsilon \vdash E : \sigma \sim_{\epsilon} E'$, then $\epsilon \mid \epsilon \vdash \sigma : \star \sim_{\epsilon} \tau; \epsilon$ and $\epsilon; \epsilon \vdash_{i} E' : \tau$.

Compilation

THEOREM 8 (COMPILATION). If $\varepsilon \mid \varepsilon; \varepsilon \vdash E : \sigma \sim_{\varepsilon} E'$, then $\varepsilon \mid \varepsilon \vdash \sigma : \star \sim_{\varepsilon} \tau; \varepsilon$ and $\varepsilon; \varepsilon \vdash_{i} E' : \tau$.

Implementation • in Hugs of "research quality" Used to test: 169 source files • 38,000 loc

Annotation burden

mapAndUnzipM :: Monad m => (a -> m (b, c)) ->
 [a] -> m ([b], [c])
mapAndUnzipM f xs = sequence (map f xs) >>=
 return . unzip
 (:: m [(b, c)]

We need a (m @ [(b, c)]) constraint. An alternate implementation wouldn't.

Annotation burden

Out of 1,934 type signatures, 20 needed extra annotations. These were easy.

Modularity

Types constrain implementations.

(A bit like how Set operations need an Ord or Hashable constraint.)

Is this a problem? Time will tell.

Related Work

- Java/Scala's bounded polymorphism
- ML modules
- Scott's E-logic
- GADTs are an orthogonal feature
- Other approaches to partiality
- Constrained type families

Partial Type Constructors Or, Making ad hoc datatypes less ad hoc

Mark P. Jones Portland State University J. Garrett Morris University of Kansas

Richard A. Eisenberg Tweag I/O rae@richarde.dev @RaeHaskell

Friday, 11 September 2020 MuniHac

