
Stitch: The Sound Type-Indexed Type Checker
(Functional Pearl)

(Author’s Cut)

Richard A. Eisenberg

Tweag I/O

Paris, France

Bryn Mawr College

Bryn Mawr, PA, USA

rae@richarde.dev

Abstract
A classic example of the power of generalized algebraic

datatypes (GADTs) to verify a delicate implementation is the

type-indexed expression AST. This functional pearl refreshes

this example, casting it in modern Haskell using many of

GHC’s bells and whistles. The Stitch interpreter is a full

executable interpreter, with a parser, type checker, common-

subexpression elimination, and a REPL. Making heavy use of

GADTs and type indices, the Stitch implementation is clean

Haskell code and serves as an existence proof that Haskell’s

type system is advanced enough for the use of fancy types in

a practical setting. The paper focuses on guiding the reader

through these advanced topics, enabling them to adopt the

techniques demonstrated here.

Keywords: Haskell, GADTs, fancy types

1 A Siren from the Folklore
A major focus of modern functional programming research

is to push the boundaries of type systems. The fancy types

born of this effort allow programmers not only to specify the

shape of their data—types have done that for decades—but
also the meaning and correctness conditions of their data. In

other words, while well typed programs do not go wrong,

fancy typed programs always go right. By leveraging a type

system to finely specify the format of their data, program-

mers can hook into the declarative specifications inherent

in type systems to be able to reason about their programs in

a compositional and familiar manner.

Though fancy types come in a great many varieties, this

work focuses on an entry-level fancy type, the generalized

algebraic data type, or GADT. GADTs, originally called first-

class phantom types [13] or guarded recursive datatypes [71],

exhibit one of themost basic ways to use fancy types. Pattern-

matching on a GADT value provides information about the

type of that value. Accordingly, different branches of a GADT

patternmatch have access to different typing assumptions. In

Haskell ’20, August 27, 2020, Virtual Event, USA
2020. ACM ISBN 978-1-4503-8050-8/20/08. . . $15.00

https://doi.org/10.1145/3406088.3409015

this way, a term-level, runtime operation (the pattern-match)

informs the type-level, compile-time type-checking—one of

the hallmarks of dependently typed programming. Indeed,

GADTs, in concert with other features, can be used to effec-

tively mimic dependent types, even without full-spectrum

support [19, 41].

It is high time for an example:
1

data G :: Type→ Type where
BoolCon :: G Bool
IntCon :: G Int

match :: ∀a.G a→ a
match BoolCon = True
match IntCon = 42

The GADT G has two constructors. One constrains G’s
index to be Bool, the other Int . The match function matches

on a value of type G a. If the value is BoolCon, then we

learn that a is Bool; our function can thus return True :: a.
Otherwise, match’s argument is IntCon, and thus a is Int;
we return 42 :: Int . The runtime pattern-match informs the

compile-time type, allowing the branches to have different
types. In contrast, a simple pattern-match requires every

branch to have the same type.

1.1 Stitch
This paper presents the design and implementation of Stitch,

a simple extension of the simply typed λ-calculus (STLC),
including integers, Booleans, basic arithmetic, conditionals,

a fixpoint operator, and let-bindings. (“Stitch” refers both
to the language and its implementation.) The expression

abstract syntax tree (AST) type in Stitch is a GADT such that

only well typed Stitch expressions can be formed. That is,

there is simply no representation for the expression true 5,
as that expression is ill typed. The AST type, Exp, is indexed
by the type of the expression represented, so that if exp ::

Exp ctx ty , then the Stitch expression encoded in exp has

the type ty in a typing context ctx .

1
The examples in this paper are type-checked in GHC 8.10 during the

typesetting process, with gratitude to lhs2TeX [37].

1

https://doi.org/10.1145/3406088.3409015

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

The example of a λ-calculus implementation using aGADT

in this way is common in the folklore, and it has been ex-

plored in previous published work (see Section 10.4). How-

ever, the goal of this current work is not to present an type-

indexedAST as a novel invention, but instead tomethodically

explore the usage of one. It is my hope that, through this

example, readers can gain an appreciation for the power and

versatility of fancy types and learn techniques applicable in

their own projects.

It can be easy to dismiss the example of well typed λ-
calculus terms as too introspective: Can’t PL researchers

come up with a better example to tout their wares than a PL

implementation? However, I wish to turn this argument on

its head. A PL implementation is a fantastic example, as most

programmers in a functional language will quickly grasp the

goal of the example, allowing them to focus on the implemen-

tation aspects instead of trying to understand the program’s

behavior. Furthermore, implementing a language is practical.
Many systems require PL implementations, including web

browsers, database servers, editors, spreadsheets, shells, and

even many games.

This paper will focus on the version of Haskell imple-

mented in GHC 8.10, making critical use of GHC’s support

for usingGADT constructors at the type level [66, 73], higher-

rank type inference [49], and, of course, GADT type infer-

ence [50, 64].
2
Accordingly, this paper can serve as an ex-

tended example of how recent innovations in GHC can power

a more richly typed programming style.

1.2 Contributions
While this functional pearl does not offer new technical con-
tributions, it illuminates recent innovations in Haskell and

invites intermediate programmers to use advanced PL tech-

niques in their programs. It makes the following contribu-

tions:

• Stitch is a full executable interpreter of the STLC, avail-

able online,
3
and suitable for classroom use as a demon-

stration of a λ-calculus.

2
The full set of extensions used somewhere in the codebase is as

follows: AllowAmbiguousTypes, BangPatterns, ConstraintKinds [42],

CPP, DataKinds [73], DefaultSignatures, DeriveAnyClass, DeriveDataTy-

peable [32, 33, 52], DeriveGeneric [38, 39], DeriveTraversable, Empty-

Case, ExistentialQuantification, ExplicitForAll, FlexibleContexts, Flexi-

bleInstances, FunctionalDependencies [28], GADTs [29, 50, 64], Gener-

alizedNewtypeDeriving [8], InstanceSigs, KindSignatures, LambdaCase,

MagicHash, MultiParamTypeClasses [45], NondecreasingIndentation, Pat-

ternGuards [21], PatternSynonyms [55], PolyKinds [66, 73], Quantified-

Constraints [6], RankNTypes [49], RoleAnnotations [8], Safe [61], Scoped-

TypeVariables [47], StandaloneDeriving, Trustworthy [61], TupleSections,

TypeApplications [20], TypeFamilies [10, 18], TypeFamilyDependencies [59],

TypeOperators, UnboxedSums, UnboxedTuples [46], UndecidableInstances,

UndecidableSuperClasses, ViewPatterns [65].

3
Some more general definitions have been monomorphized in this presen-

tation to aid in understanding. The executable code is at https://gitlab.com/

goldfirere/stitch/-/tree/hs2020.

• Section 3 is an accessible primer on Haskell’s advanced

features, as used in the examples in this paper.

• This work offers many settings for the use of fancy

types. For example, parser output is guaranteed to be

well-scoped.

• Section 9 describes aspects of the common-subexpression

elimination pass implemented in Stitch, offered as

proof that the use of an indexed AST scales to the

more complex analyses inherent in real compilers.

• The development described here serves as an exis-

tence proof that Haskell—even without full dependent

types—is a suitable language in which to use practical

fancy types.

2 Introducing Stitch
Stitch is an implementation of the simply typed λ-calculus,
so we will start off with a review of this little language,

including the Stitch extensions. See Figure 1.
4

We see that Stitch is quite a standard implementation of

the STLC [e.g., 56, Chapter 9] with modest extensions. It

has a call-by-value semantics, and the value of a let-bound
variable is computed before entering the body of the let.
Stitch supports general recursion by way of its (standard)

fix operator, which evaluates to a fixpoint.

Stitch comes with both a small-step and big-step opera-

tional semantics, though the small-step semantics is elided

here. Users of Stitch may find it interesting to compare its

behavior with respect to the choice of semantics; commands

at the Stitch REPL allow the user to choose how they wish

to reduce an expression to a value, allowing users to witness

that big-step semantics tell you nothing about a term during

evaluation, while the small-step semantics can show you the

steps the expression takes as it reduces.

2.1 The Stitch REPL
Before we jump into the implementation, it is helpful to look

at the user’s experience of Stitch. The Stitch REPL allows

the user to enter in expressions for evaluation and to query

aspects of an expression. An example is illustrative:

Welcome to the Stitch interpreter, version 1.0.

λ> 1 + 1

2 : Int

λ> \x:Int->Int.\y:Int.x y

λ#:Int -> Int.λ#:Int.#1 #0 : (Int -> Int) -> Int -> Int

λ> expr = (\x:Int->Int.\y:Int.x y) (\z:Int.z + 3) 5

(λ#:Int -> Int.λ#:Int.#1 #0) (λ#:Int.#0 + 3) 5 : Int

λ> expr

8 : Int

λ> :step expr

(λ#:Int -> Int.λ#:Int.#1 #0) (λ#:Int.#0 + 3) 5 : Int

--> (λ#:Int.(λ#:Int.#0 + 3) #0) 5 : Int

4
The formalization is type-checked and typeset with the help of ott [58].

2

https://gitlab.com/goldfirere/stitch/-/tree/hs2020
https://gitlab.com/goldfirere/stitch/-/tree/hs2020

Stitch Haskell ’20, August 27, 2020, Virtual Event, USA

Metavariables:

x term vars

Grammar:

τ ::=τ1 → τ2 | Int | Bool types

op ::=+ | − | ∗ | /| % | < | ≤ | > | ≥ | ≡ operators

Z ::= . . . integers

B ::= true | false Booleans

e ::= x | λx:τ .e | e1 e2 | let x = e1 in e2 | e1 op e2
| if e1 then e2 else e3 | fix e | Z | B expressions

v ::= λx:τ .e | Z | B values

Γ ::= ∅ | Γ, x:τ contexts

result(op) is the result type of an operator: Int for

{+,−, ∗, /,%} and Bool for {<, ≤, >, ≤,≡}
apply(op, v1, v2) is the result of applying op to v1 and v2
e1[e2/x] denotes substitution of e2 for x in e1

Γ ⊢ e : τ Typing rules

x : τ ∈ Γ

Γ ⊢ x : τ
T_Var

Γ, x:τ1 ⊢ e : τ2
Γ ⊢ λx:τ1.e : τ1 → τ2

T_Lam

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

T_App

Γ ⊢ e1 : τ1 Γ, x:τ1 ⊢ e2 : τ2
Γ ⊢ let x = e1 in e2 : τ2

T_Let

Γ ⊢ e : τ → τ

Γ ⊢ fix e : τ
T_Fix

Γ ⊢ e1 : Int Γ ⊢ e2 : Int
Γ ⊢ e1 op e2 : result(op)

T_Arith

Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ
Γ ⊢ if e1 then e2 else e3 : τ

T_Cond

Γ ⊢ Z : Int
T_Int

Γ ⊢ B : Bool
T_Bool

e ⇓ v Big-step operational semantics

v ⇓ v
E_Value

e1 ⇓ λx:τ .e e2 ⇓ v2
e[v2/x] ⇓ v

e1 e2 ⇓ v
E_App

e1 ⇓ v1 e2[v1/x] ⇓ v
let x = e1 in e2 ⇓ v

E_Let

e1 ⇓ v1 e2 ⇓ v2
e1 op e2 ⇓ apply(op, v1, v2)

E_Arith

e ⇓ λx:τ .e′ e′[fix (λx:τ .e′)/x] ⇓ v
fix e ⇓ v

E_Fix

e1 ⇓ true e2 ⇓ v
if e1 then e2 else e3 ⇓ v

E_IfTrue

e1 ⇓ false e3 ⇓ v
if e1 then e2 else e3 ⇓ v

E_IfFalse

Figure 1.The simply typed λ-calculus, as embodied in Stitch.

--> (λ#:Int.#0 + 3) 5 : Int

--> 5 + 3 : Int

--> 8 : Int

We see here that the syntax is straightforward and fa-

miliar, though Stitch requires a type annotation at every

λ-abstraction. The most distinctive aspect of this session is

Stitch’s approach to variable binding, which we explore next.

2.2 De Bruijn Indices
Every implementor of a programming language must make

a choice of representation of variable binding. The key chal-

lenge is that, no matter which representation we choose, we

must be sure that λx:τ .x and λy:τ .y are treated identically

in all contexts. There are many possible choices out there:

named binders [57], locally nameless binders [23], using

higher-order abstract syntax [53], parametric higher-order
abstract syntax [14], Unbound [69], bound [30], among oth-

ers. The interested reader is referred to Weirich et al. [69],

where even more possibilities lie in wait. In this work, how-

ever, I choose trusty, old de Bruijn indices [16], as these serve

two design goals of Stitch well: de Bruijn indices work easily

with an indexed AST, and they can easily arise when teaching

implementations of the λ-calculus [e.g., 56, Chapter 6].
A de Bruijn index is a number used in the place of a

variable name; it counts the number of binders that inter-

vene between a variable occurrence and its binding site. We

see above that the expression \x:Int->Int. \y:Int x y
desugars to λ#:Int -> Int. λ#:Int. #1 #0, where the
#1 refers to the outer binder (1 intervening binding site) and

the #0 refers to the inner binder (0 intervening binding sites).
De Bruijn indices have the enviable property of making α-
equivalence utterly trivial: because variables no longer have

names, we need not worry about renaming. However, they

make other aspects of implementation harder. Specifically,

two challenges come to the fore:

1. De Bruijn indices are hard for programmers to under-

stand and work with.

2. As an expression moves into a new context, the in-

dices may have to be shifted (increased or decreased)

in order to preserve their identity, as the number of

intervening binding sites might have changed. It is

very easy for an implementor to make a mistake when

doing these shifts.

As a partial remedy to the first problem, Stitch color-codes

its output (as can be seen in this typeset document). A vari-

able occurrence and its binding site are assigned the same

color, so that a reader no longer has to count binding sites.

Though only a modest innovation, this color-coding has

proved to be wildly successful in practice; not only has it

been helpful in my own debugging, but working functional

programmers who see it have gasped, “I finally understand

3

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

de Bruijn indices now!” more than once. Note that program-

mers never have to write using de Bruijn indices (the parser

converts their names to indices quite handily) and so this

simple reading aid goes a long way toward fixing the first

drawback.

The second drawback can be more troublesome. The rea-

son we have such a plethora of approaches to variable bind-

ing must be, in part, that implementors have been unhappy

with the approaches available—they thus invent a new one.

One reason for this unhappiness is that capture-avoiding

substitution is a real challenge. Pierce [56, Section 5.3] gives

an instructive account of the pitfalls an implementor encoun-

ters. And it is not just substitution. As a language grows in

complexity, dealing with name clashes and renaming crops

up in a variety of places. Indeed, the venerable GHC im-

plementation only relatively recently (January, 2016) added

checks to make sure its handling of variable naming is bug-

free; I count 33 call sites within the GHC source code (as of

March, 2020) that still use the “unchecked” variant of sub-

stitution because using the checked version fails on certain

test cases. Each of these call sites is perhaps a lurking bug,

waiting for a pathological program to induce an unexpected

name clash that could cause GHC to go wrong.

However, a solution to this conundrum is at hand: because

Stitch’s expression AST type is indexed by the type of the

expression represented, an erroneous or forgotten shifting

of a de Bruijn index leads to a straightforward error, caught

as Stitch itself is being compiled. Indeed, I shudder to think

about the challenge in getting all the shifts correct without

the aid of an indexed AST. Thus, using an indexed AST fully

remedies the second drawback.

One twist on the second drawback remains, however: all

this shifting can slow the interpreter down. A variable shift

requires a full traversal and rebuild of the AST, costing pre-

cious time and allocations. Though I have not done it in my

implementation, it would be possible to add a Shift construc-

tor to the AST type to allow these shifts to be lazily evaluated;

the design and implementation of other opportunities for

optimization are left as future work.

2.3 A Slightly Longer Example: Primality Checking
As a final example of a user’s interaction with Stitch, I

present the program in Figure 2. It implements a primality

checker in Stitch. The file prime.stitch,5 can be loaded

into the Stitch REPL with :load prime.stitch.

λ> :load prime.stitch
...
λ> isPrime 7
true : Bool
λ> isPrime 9

5
https://gitlab.com/goldfirere/stitch/-/blob/hs2020/tests/prime.stitch

Stitch source, prime.stitch:

noDivisorsAbove =
fix \nda: Int -> Int -> Bool.
\tester:Int. \scrutinee:Int.
if tester * tester > scrutinee
then true
else if scrutinee % tester == 0
then false
else nda (tester+1) scrutinee ;

isPrime = noDivisorsAbove 2

After parsing and type checking:

noDivisorsAbove =
fix λ#:Int -> Int -> Bool.
λ#:Int. λ#:Int.
if #1 * #1 > #0
then true
else if #0 % #1 == 0
then false
else #2 (#1 + 1) #0
: Int -> Int -> Bool

isPrime = fix . . . 2 : Int -> Bool

Figure 2. A primality checker in Stitch.

false : Bool

In the right half of the figure, we see Stitch’s parsed and

type-checked representation of the original program. This

AST cannot store global variables (all variables are de Bruijn

indices), so Stitch inlines noDivisorsAbove in the definition

of isPrime, above.
We are now almost ready to start seeing the fancy types,

but first, we need to install some necessary infrastructure.

3 Fancy-Typed Utilities
Every great edifice necessarily requires some plumbing.What

is fun in this case is that even the plumbing needs some fancy

types in order to support what comes ahead. The definitions

in this section are standard, and readers familiar with depen-

dently typed programming may wish to skim this section

quickly or skip to the next section. The utilities described

here are useful beyond just Stitch, and some have implemen-

tations released separately. However, I have included them

within the Stitch package in order to keep it self-contained.

These modules, too, are prefixed with Language.Stitch. so
as not to pollute the module namespace. This section intro-

duces Peano natural numbers (useful for tracking the number

of bound variables), length-indexed vectors (useful for track-

ing the types of in-scope variables), and singletons (useful

4

https://gitlab.com/goldfirere/stitch/-/blob/hs2020/tests/prime.stitch

Stitch Haskell ’20, August 27, 2020, Virtual Event, USA

during type checking, when we must connect a type-level

context with term-level type representations).

3.1 Length-Indexed Vectors
No exploration of fancy types would be complete without

the staple of length-indexed vectors, a ubiquitous example

because of their perspicuity and usefulness. A length-indexed

vector is simply a linked list, where the list type includes

the length of the list; thus, a list of length 2 is a distinct type

from a list of length 3. Here is the type definition:

data Nat = Zero | Succ Nat
data Vec :: Type→ Nat → Type where
VNil :: Vec a Zero
(:>) :: a→ Vec a n→ Vec a (Succ n)

We will take this line-by-line. First is the declaration of

unary natural numbers. This type is terribly inefficient at

run-time, but we use it only at compile-time [73], where it

gives us nice inductive reasoning principles. We next see that

Vec is parameterized by an element type of kind Type and
a length index of kind Nat . The declaration for VNil states
that VNil is always a Vec of length Zero, but it can have any

element type a. The cons operator :> takes an element (of

type a), the tail of the vector (of type Vec a n) and produces a
vector that is one longer than the tail (of type Vec a (Succ n)).

Note the use of Nat as a kind and Zero and Succ as types.
When GHC is resolving names used in a type, it first looks

in the type-level namespace, where definitions like Vec and
Nat live. Failing that lookup (for capitalized identifiers), it

looks in the term-level namespace; this is what happens in

the case of Zero and Succ.6 Finding these constructors, GHC
has no trouble using them in types, where they keep their

usual meaning.
7

3.1.1 Appending. We will need to append vectors, and

the two vectors may be of different lengths. Clearly, the

append function should take arguments of type Vec a n
and Vec a m, where the element type a is the same but the

length indices n and m are different. However, what should

the result type of appending be? Of course, the length of the

concatenation of two vectors is the sum of the lengths of the

vectors: the result should be Vec a (n +m). We thus need to

define + on Nats. What is unusual here is that we need to

use + in types, not in terms. GHC’s approach here is to use

a type family [10, 18], which is essentially a function that

works on types and type-level data. Here are the definitions:

type family n +m where
Zero +m = m
Succ n +m = Succ (n +m)

6
If the identifier exists in both namespaces, it can be prefixed with ’ to tell

GHC to look only in the term-level namespace.

7
In my experience, these hand-written unary naturals work better than

GHC’s built-in naturals for defining vectors, owing to their inductive

structure.

(+++) :: Vec a n→ Vec a m→ Vec a (n +m)
VNil +++ ys = ys
(x :> xs)+++ ys = x :> (xs +++ ys)

Already, the fancy types are working for us, making sure

our code is correct. In the first clause of +++, we pattern-

match on VNil. This match tells us both that the first vector

is empty, and also that the type variable n equals Zero. This
second fact comes from the declared type of VNil in the

definition of Vec. All VNils have a type index of Zero, and
thus we know that if VNil :: Vec a n, then n must be Zero.
The type checker uses this fact to accept the right-hand side

of that equation: it must be convinced that ys ::Vec a (n+m),
the declared return type of +++. Because the type checker

knows that n is Zero, however, it can use the definition of

the type family + to reduce Zero+m tom, and then it simply

uses the fact that ys :: Vec a m, as ys is the second argument

to +++. The second equation is similar, except that it uses the

second equation of + to check the equation’s right-hand side.

If we forgot to cons x onto xs +++ ys in this right-hand side,

the definition of +++ would be rejected as ill typed.

3.1.2 Indexing. How should we look up a value in a vec-

tor? We could use an operator like Haskell’s standard !!

operator that looks up a value in a list. However, this is un-

satisfactory, because the !! throws an exception when its

index is out of range. Given that we know a vector’s length

at compile-time, we can do better.

The key step is to have a type that represents natural

numbers less than some known bound. The type Fin (short

for “finite set”), common in dependently typed programming,

does the job:

data Fin :: Nat → Type where
FZ :: Fin (Succ n)
FS :: Fin n→ Fin (Succ n)

The Fin type is indexed by a natural number n. The type Fin n
contains exactly n values, corresponding to the numbers

0 through n − 1. This GADT tends to be a bit harder to

understand than Vec because (unlike Vec), you cannot tell

the type of a Fin just from the value. For example, the value

FS FZ can have both type Fin 2 and Fin 10 (taking liberty

to use decimal notation instead of unary notation for Nats),
but not Fin 1. Let us understand this type better by tracing

how we can assign a type to FS FZ :

• Suppose we are checking to see whether FS FZ :: Fin 1.

We see that FS ::Fin n→ Fin (Succ n). Thus, for FS FZ ::

Fin 1, we must instantiate FS to have type Fin Zero→
Fin (Succ Zero). We must now check FZ :: Fin Zero.
However, this fails, because FZ :: Fin (Succ n)—that
is, FZ ’s type index must not be Zero. We accordingly

reject FS FZ :: Fin 1.

• Now say we are checking FS FZ :: Fin 5. This proceeds

as above, but in the end, we must check FZ ::Fin 4. The

5

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

number 4 is indeed the successor of another natural,

and so FZ :: Fin 4 is accepted, and thus so is FS FZ ::

Fin 5.

Following this logic, we can see how Fin n really has precisely
n values.

As a type whose values range from 0 to n − 1, Fin n is the

perfect index into a vector of length n:

(!!!) :: Vec a n→ Fin n→ a
vec !!! fin = case (fin, vec) of -- reversed due to laziness

(FZ , x :>) → x
(FS n, :> xs) → xs !!! n

GHC comeswith a pattern-match completeness checker [29]

that marks this case as complete, even without an error case.

To understand why, we follow the types. After matching

fin against either FZ or FS n, the type checker learns that n
must not be zero—the types of both FZ and FS end with a

Succ index. Since n is not zero, then it cannot be the case that

vec is VNil. Even though the pattern match includes only :>,
that is enough to be complete.

Now, we can explore this match reversal. Haskell is a lazy

language [44], which means that variables can be bound to

diverging computations (denoted with ⊥). When matching

a compound pattern, Haskell matches the patterns left-to-

right, meaning that the left-most scrutinee (fin, in our case)

is evaluated to a value and then inspected before evaluating

later scrutinees, such as vec. Imagine matching against vec
first. In this case, it is conceivable that vec would be VNil
while fin would be ⊥. This is not just theoretical; witness the
following function:

lazinessBites :: Vec a n→ Fin n→ String
lazinessBites VNil = "empty vector"

lazinessBites = "non-empty vector"

If we try to evaluate lazinessBites VNil undefined , that ex-
pression is accepted by the type checker and evaluates hand-

ily to "empty vector". If we scrutinize vec first, then, the
completeness checker correctly tells us that we must handle

the VNil case. On the other hand, in the implementation of

!!! with the pattern match reversed, we ensure that fin is not

⊥ before ever looking at vec and can thus be sure that vec
cannot be VNil.

3.2 Singletons
The technique of singletons is a well worn and well stud-

ied [41] way to simulate dependent types in a non-dependent

language. Though at least two libraries exist for automati-

cally generating singletons in Haskell [19, 40], Stitch does

not depend on these libraries, in order to maintain some sim-

plicity and be self-contained. However, the design of these

libraries is the direct inspiration for the definitions in Stitch.

To motivate singletons, consider writing replicate for vec-
tors. The replicate function takes a natural number n and

an element elt and creates a vector of length n consisting

of n copies of elt . Despite this simple specification, there

is no easy way to write a type signature for replicate; you
might try replicate ::Nat → a→ Vec a ?, but you’d be stuck

at the ?. The problem is that the choice of the type index
for the return type must be the value of the first parameter.

This is the hallmark of dependent types. However, because

Haskell does not yet support dependent types, singletons

will have to do. Here is the definition of a singleton Nat (or,
more precisely the family of singleton Nats):

data SNat :: Nat → Type where
SZero :: SNat Zero
SSucc :: SNat n→ SNat (Succ n)

The type SNat is indexed by a Nat that corresponds to the

value of the SNat . That is, the type of SSucc (SSucc SZero)
is SNat (Succ (Succ Zero)). Conversely, the only value of the

type SNat (Succ (Succ Zero)) is SSucc (SSucc SZero). This
last fact is why singleton types are so named: a singleton

type has precisely one value. Because of the correspondence

between types and terms with singleton types, matching

on the values of a singleton inform the type index—exactly

what we need here.

Here is the definition for replicate:

replicate :: SNat n→ a→ Vec a n
replicate SZero = VNil
replicate (SSucc n′) elt = elt :> replicate n′ elt

TheGADT patternmatch against SZero tells the type checker
that n is Zero in the first equation, making VNil an appropri-

ate result. Similarly, the match tells the type checker that n
is Succ n′ (for some n′) in the second equation, and thus a

vector one longer than n′ is an appropriate result. Essentially,
the n in the type signature for replicate is the value of the
first parameter, exactly as desired.

Because a singleton value is uniquely determined by its

type, it is convenient to be able to pass singletons implicitly.

We can take advantage of Haskell’s type class mechanism to

do this, via the following type class and instances:

class SNatI (n :: Nat) where snat :: SNat n
instance SNatI Zero where snat = SZero
instance SNatI n⇒ SNatI (Succ n) where snat = SSucc snat

Any function with a SNatI n constraint can gain access to

the singleton for n simply by calling the snat method.

Singletons are not the final word for dependent types in

Haskell. They can be unwieldy [36] and conversions between

singleton types and unrefined base types (such as converting

from SNat n to Nat) are potentially costly. Work is under

way [17, 25, 68, 72] to add full dependent types to Haskell.

However, for our present purposes, the singletons work quite

nicely, and their drawbacks do not bite.

6

Stitch Haskell ’20, August 27, 2020, Virtual Event, USA

-- Stitch types, and their singletons

data Ty = TInt | TBool | Ty :→ Ty
data STy :: Ty → Type where
SInt :: STy TInt
SBool :: STy TBool
(::→) :: STy arg → STy res→ STy (arg :→ res)

toSTy :: Ty → (∀t . STy t → r) → r
toSTy TInt k = k SInt
toSTy TBool k = k SBool
toSTy (a :→ b) k = toSTy a $ λsa→ toSTy b $ λsb→

k (sa ::→ sb)

-- Propositional equality

data (a :: k) :∼:(b :: k) where
Refl :: a :∼: a

-- Informative equality comparison

class TestEquality (t :: k → Type) where
testEquality :: t a→ t b→ Maybe (a :∼: b)

instance TestEquality STy where . . .

Figure 3. Stitch types and singletons

4 Stitch Types
We start our exploration of the Stitch implementation by

looking at its representation for types, in Figure 3. The type

definition, Ty is uninteresting, defining integers, Booleans,

and functions between these. However, Ty is not enough: in

order to build our indexed AST, we will need to reason about

Stitch types both at runtime and at compile time. We thus

need the singleton type STy , indexed by Ty .
When processing a λ-abstraction, Stitch needs to parse

the type annotation on the argument, producing a Ty . Dur-
ing type-checking, however, Stitch needs an STy ; we thus
must be able to convert from Ty to STy . This is done in the

toSTy function. However, we cannot give this function a type

such as Ty → STy t: there is no way to choose what the

output t should be. What we would like to write, ideally, is

toSTy ::Ty → ∃t . STy ty . However, Haskell does not support
such a convenient construct. While Haskell’s support for ex-

istential variables in datatypes could work here, I found that

continuation-passing style (CPS), as seen in the higher-rank

type of toSTy in Figure 3, was easier and made for code with

a better flow. With CPS, we can easily pass the type index t
to the continuation k.
A critical job of any type-checker is comparing types for

equality. In Stitch, though, we must compare the singleton

STys, not the unrefined Tys. The usual (==) operator will
not work for us, because the two STys we are comparing

might have different type indices. Instead, we want to be able

to compare STy a with STy b. Furthermore, if STy a equals
STy b, we need to be able to tell GHC’s type-checker that

a equals b: this will allow GHC to accept the implementa-

tion of Stitch’s type checker. (See the case for type-checking

function applications in Section 7 for an illustrative exam-

ple.) Because this general pattern—testing an indexed type

for equality in order to get a type equality usable by GHC—

comes up with some regularity when doing fancy-typed

programming, GHC includes the (:∼:) type and TestEquality
class in its Data.Type.Equalitymodule. These also appear

in Figure 3.

The type (:∼:) encodes propositional equality. That is, if
you have a value of type a :∼: b, then you can pattern-match

on this value to learn that a equals b. Types that are indexed
by awill now be equal to types indexed by b. The testEquality
method in TestEquality thus optionally returns a :∼: b; this
way, if the test succeeds, we can pattern-match on the result

to learn that two types should be considered equivalent.

We call this an informative equality comparison, because it

informs GHC’s type checker of the equality. In contrast, a

Bool return type would not.

Having seen how types are represented throughout Stitch,

we are now ready to start exploring the Stitch pipeline, be-

ginning with the parser.

5 Scope-Checked Parsing
Though Stitch’s hallmark is its indexed AST for expressions,

we cannot parse into that AST directly. Type-checking can

produce better error messages and is more easily engineered

independent from the left-to-right nature of parsing. We thus

must define an unchecked (un-indexed) AST for the result

of parsing the user’s program.

However, even here there is a role for fancy types. While

type-checking during parsing is a challenge, name resolu-

tion during parsing works nicely. We can thus parse into an

AST that can express only well-scoped terms. The AST type

definition follows:

-- Unchecked expression, indexed by the

-- number of variables in scope

data UExp (n :: Nat)
= UVar (Fin n) -- de Bruijn index for a variable

| ULam Ty (UExp (Succ n))
| UApp (UExp n) (UExp n)
| UIntE Int
. . .

The type UExp (“unchecked expression”) is indexed by a

Nat that denotes the number of local variables in scope. So,

a UExp 0 is a closed expression, while a UExp 2 denotes an

expression with up to two free variables. Note that ULam
increments this index for the body of the λ-abstraction.
Variables are naturally stored in a Fin n—precisely the

right type to store de Bruijn indices. If an expression has

only 2 variables in scope, then we must make sure that a

7

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

variable has an index of either 0 or 1, never more. Using Fin
gives us this guarantee nicely.

Lambda-abstractions store a Ty , the type of the bound

variable. Types are further explored in Section 4. Note that

there is no explicit place in the AST for the bound variable,

as the bound variable always has a de Bruijn index of 0.

The main novelty in working with UExp is, of course, the

Fin n type for de Bruijn indices. Supporting this design re-

quires accommodations in the parser. Stitch’s parser is a

monadic parser built on the Parsec library [35]. Its input is

the series of tokens, each annotated with location informa-

tion, produced by the entirely unremarkable lexer (also built

using Parsec). It can parse either statements or expressions.

The most interesting aspect of the parser is that the parser

type must be indexed by number of in-scope variables—this

is what will set the index of any parsed Fin de Bruijn indices.

We thus have this definition for the parser monad:

type Parser n a
= ParsecT [LToken] () (Reader (Vec String n)) a

The ParsecT monad transformer [27] is indexed by (1) the

type of the input stream, which in our case is [LToken]; (2)
the state carried by the monad, which in our case is trivial; (3)

an underlyingmonad, which in our case isReader (Vec String n),
where the environment is a vector of the names of the in-

scope variables; and (4) the return type of computations, a.
Thus, a computation of type Parser n a parses a list of lo-

cated tokens into something of type a in an environment

with access to the names of n in-scope local variables.

5.1 A Heterogeneous Reader Monad
The only small difficulty in working with Parser , as defined
above, is around variable binding (naturally). Here is the

relevant combinator:

bind :: String → Parser (Succ n) a→ Parser n a
bind bound_var thing_inside
= hlocal (bound_var :>) thing_inside

Given a bound variable name, bind parses some type a in

an extended environment (with Succ n bound variables) and

then returns the result in an environment with only n bound
variables. Note that bind does not do any kind of shifting

or type-change of the result: if the inner parser is of type,

say, Parser (Succ n) (Fin (Succ n)), then the outer result will

have type Parser n (Fin (Succ n)). Note that the index to the

Fin does not change.

The bind function is implemented using a new combinator

hlocal, inspired by the local method of the MonadReader
class from themtl (monad transformer library). The relevant

part of this class is

class Monad m⇒ MonadReader r m | m→ r where
local :: (r → r) → m a→ m a
. . .

The local method allows a computation to assume a local

value of the environment for some smaller computation.

This is exactly what we want here. The only problem is that

the type of the local environment is different than the type

of the outer environment: the outer environment has type

Vec String n while the local one has type Vec String (Succ n).
Wemust accordingly define a heterogeneous readermonad,

which allows a type change for the local environment. Here

is the class definition:

class Monad m⇒ MonadHReader r1 m | m→ r1 where
type SetEnv r2 m :: Type→ Type
hlocal :: (r1 → r2)

→ (Monad (SetEnv r2 m) ⇒ SetEnv r2 m a)
→ m a

TheMonadHReader class allows for the possibility that the

environment (denoted with the r variables here) in a local

computation is different than the environment in the outer

computation. Because there may be many types that have

MonadHReader instances, we must use the associated type

family SetEnv to update the monad type with the new envi-

ronment type.

In the inner computation, we need to know that the un-

derlying monad, with the updated environment, is still a

member of the Monad type class. This fact is assumed by

putting the constraint Monad (SetEnv r2 m) on the inner

computation, leveraging Haskell’s support for higher-rank

types [49].
8

Returning to our indexed parser, we need these two in-

stances:

instance Monad m⇒ MonadHReader r1 (ReaderT r1 m) where
type SetEnv r2 (ReaderT r1 m) = ReaderT r2 m
hlocal f thing_inside = . . .

instance MonadHReader r1 m
⇒ MonadHReader r1 (ParsecT s u m) where
type SetEnv r2 (ParsecT s u m) = ParsecT s u (SetEnv r2 m)
hlocal f thing_inside = . . .

Here, ReaderT is the monad-transformer form of the Reader
monad we saw earlier in the definition of Parser . (Reader is
just defined to be a ReaderT based on the Identity monad.)

The first instance says that the environment associated with

a ReaderT r1 m is r1; that is why the r1 is the first parame-

ter in the MonadHReader instance. It then describes that to

update the environment from r1 to r2, we just replace the
type parameter to ReaderT . The implementation is straight-

forward and elided here.

8
A reader informed about recent updates to GHC might wonder why we do

not use quantified constraints [6] here. While this approach would seem to

work, the current implementation fails us, because the head of a quantified

constraint cannot be a type family, as described at https://ghc.haskell.org/

trac/ghc/ticket/14860.

8

https://ghc.haskell.org/trac/ghc/ticket/14860
https://ghc.haskell.org/trac/ghc/ticket/14860

Stitch Haskell ’20, August 27, 2020, Virtual Event, USA

type Ctx n = Vec Ty n

data Exp :: ∀n.Ctx n→ Ty → Type where
Var :: Elem ctx ty → Exp ctx ty
Lam :: STy arg → Exp (arg :> ctx) res
→ Exp ctx (arg :→ res)

App :: Exp ctx (arg :→ res) → Exp ctx arg → Exp ctx res
IntE :: Int → Exp ctx TInt
. . .

-- An encoding of (\x:Int. x) 5, as an example

example :: Exp VNil TInt
example = App (Lam SInt (Var EZ)) (IntE 5)

Figure 4. The type-indexed Exp expression AST

The ParsecT instance lifts aMonadHReader instance through
the ParsecT monad transformer, propagating the action of

SetEnv . The implementation requires the usual type chasing

characteristic of monad-transformer code, but offered no

particular coding challenge.

With all this in place, it is straightforward to use the hlocal
method in the bind function, giving us exactly the behavior

that we want.

6 The Type-Indexed Expression AST
We now are ready to greet the Exp type, the type-indexed

AST for expressions. Its definition appears in Figure 4. The

Exp type is indexed by two parameters: a typing context of

kind Ctx n, where n is the number of bound variables; and a

the expression’s type, a Ty .
Compare the definition of Exp with the typing rules in

Figure 1. Each constructor corresponds with precisely one

rule. The types of the constructor arguments correspond

precisely with the premises of the rule, and the type of the

constructor result corresponds precisely with the rule con-

clusion. Take function application as an example. The T_App

rule has two premises: one gives expression e1 type τ1 → τ2,
and the other checks to see that e2 has the argument type τ1.
In the same way, the first argument to the constructor App
takes an expression in some context ctx and with some type

arg :→ res. The second argument to App then has type arg.
Furthermore, just as the conclusion to the T_App rule says

that the overall e1 e2 expression has type τ2, the result type
of the App constructor is an expression of type res. An easier

example is for the constructor IntE , where the resulting type
is simply TInt , regardless of the context.

Note the Lam constructor for building λ-abstractions. The
first argument is STy arg. This argument contains both a

Stitch type, suitable for runtime comparisons and pretty-

printing, and also a compile-time type index arg, used later

in the type of Lam. Like replicate, this is a place where a de-
pendent type is called for. Happily, the STy singleton works

well here.

The definition of Exp shows us why modeling a typed

language is such a perfect fit for GADTs—the information

in the typing rules is directly expressed in the AST type

definition.

Perhaps the most distinctive aspect of Exp—other than
its indices—is the choice of representation for variables. Exp
continues our use of de Bruijn indices, but wemust be careful

here: we need the type of a variable to be expressed in the

return index to the Var constructor. While it is conceivable

to do this via some Lookup type family, the Elem type is a

much more direct approach:

data Elem :: ∀a n. Vec a n→ a→ Type where
EZ :: Elem (x :> xs) x
ES :: Elem xs x → Elem (y :> xs) x

The Elem type is indexed by a vector (of any element

type a) and a distinguished element of that vector. An Elem
value, when viewed as a Peano natural number, is simply the

index into the vector that selects that distinguished element.

Equivalently, a value of type Elem xs x is a proof that x is an

element of the vector xs; the computational content of the

proof is x’s location in xs.
The definitions of the two constructors support this de-

scription. The EZ constructor has type Elem (x :> xs) x—we
can see plainly that the distinguished element x is the first

element in the vector. The ES constructor takes a proof that

x is in a vector xs and produces a proof that x is in the vector

y :>xs (for any y). Naturally, x’s index in y :>xs is one greater
than x’s index in xs, thus underpinning the interpretation of

ES as a Peano successor operator.

In the case of our use of Elem within the Exp type, the

vectors at hand are contexts (vectors of Tys) and the elements

are types of Stitch variables. The Elem type gives us exactly

what we need: a type-level relationship between a context

and a type, along with the term-level information (the de

Bruijn index) to locate that type within that context.

7 The Sound Type-Indexed Type Checker
We are ready now for the part we have all been waiting for:

the sound type-indexed type checker. The core cases appear

in Figure 5; these cases illustrate the points of interest.

The check function takes an unchecked expression of type

UExp and converts it into a checked expression of type Exp.
For the same reasons that toSTy was written using CPS in

Section 4, we use CPS here. We also must pass STy t to the

continuation, so that runtime comparisons can be performed.

The check function works over closed expressions, as we

always call it on a top-level expression. However, it must re-

cur into open expressions, and so we define the more-general

go local helper function. The go function’s type mimics that

9

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

check :: MonadError Doc m
⇒ UExp Zero
→ (∀(t :: Ty). STy t → Exp VNil t → m r)
→ m r

check = go SCNil where
go :: MonadError Doc m
⇒ SCtx (ctx :: Ctx n) → UExp n
→ (∀t . STy t → Exp ctx t → m r) → m r

go ctx (UVar n) k = check_var n ctx $ λty elem→
k ty (Var elem) where

check_var :: Fin n→ SCtx (ctx :: Ctx n)
→ (∀t . STy t → Elem ctx t → m r) → m r

check_var FZ (ty :%>) k0 = k0 ty EZ
check_var (FS n0) (:%> ctx0) k0 =
check_var n0 ctx0 $ λty elem→ k0 ty (ES elem)

go ctx (ULam ty body) k =
toSTy ty $ λsty →
go (sty :%> ctx) body $ λres_ty body ′→
k (sty ::→ res_ty) (Lam sty body ′)

go ctx e@(UApp e1 e2) k =
go ctx e1 $ λfun_ty e′

1
→

go ctx e2 $ λarg_ty e′
2
→

case fun_ty of
arg_ty ′ ::→ res_ty
| Just Refl ← testEquality arg_ty arg_ty ′

→ k res_ty (App e′
1
e′
2
)

→ typeError e . . .

go (UIntE n) k = k SInt (IntE n)

Figure 5. The sound type-indexed type checker (excerpted)

of check but allows for the possibility of open expressions,

quantifying over the context length, n, and context ctx . Be-
cause we will need to look up variable types at runtime, we

need the context to be available both at compile-time (to use

as an index to Exp) and at runtime. This means that we need

a singleton for the context, as embodied by this definition:

data SCtx :: ∀n.Ctx n→ Type where
SCNil :: SCtx VNil
(:%>) :: STy t → SCtx ts→ SCtx (t :> ts)

Checking variables. The variable case is handled by the

helper function check_var . The check_var function uses the

Fin n stored by the UVar constructor to index into the typing
context, stored as the singleton SCtx . When check_var finds
the type it is looking for, it passes that type to the contin-

uation, along with an Elem value which will store the de

Bruijn index in the Exp type. GHC’s type checker is working

hard here to make sure this function definition is correct,

using the definition of Fin to ensure that our pattern-match

is complete,
9
and that the Elem we build really does show

that the type t is in the context ctx . Note that there is no
possibility of errors here: the use of Fin in the UExp type

guarantees that the variable is in scope.

Checking a λ-abstraction. The Lam case is where we

use the toSTy function introduced in Section 4. After con-

verting the input Ty into an STy named sty , we check the

abstraction body, learning its result type res_ty and getting

the type-checked expression body ′. We then continue with

a function type composed from sty and res_ty , using the ::→
constructor of STy .

Checking an application. Checking function applica-

tions is really the heart of any type checker: this is the princi-

pal place where two types may be in conflict. In our case, we

check the two expressions separately, getting their types and

type-checked expression trees. We then must ensure that

fun_ty , the type of the applied function, is indeed a func-

tion type. This is done by a case-match, looking for a ::→

constructor. We then must ensure that the actual argument

type arg_ty matches the function’s expected argument type

arg_ty ′. We use the testEquality function, explained in Sec-

tion 4. If successful, this function returns a proof to the type

checker that arg_ty equals arg_ty ′, and we are then allowed

to build the application with App. If either check fails, we

issue an error.

The type discipline in Stitch works to keep us correct here.

If we skipped the type checks, the App application would be

ill-typed, as App expects its first argument to be a function

and its second argument to have the argument type of that

function. The checks ensure this to GHC, which then allows

our use of App to succeed.

There are several more cases in the type checker, all sim-

ilar to those presented here. In all, this type checker was

remarkably easy to write, given the groundwork in setting

up the types correctly. GHC’s type checker stops us from

making mistakes here—the whole point of using an indexed

expression AST. Furthermore, the type errors I encountered

during implementation were indeed helpful, pointing out

any missing type equality checks.

Beyond these observations, I wish to note simply that such

a type checker is possible to write at all. In conversations

with experienced functional programmers, some have been

surprised that the type-indexed expression AST has any prac-

tical use, despite the fact that this technique is not new [e.g.,

43]. After all, how could you guarantee that expressions are

well typed? The answer is: check them first, as check does

for us here.

9
Note that we match the Fin before the vector, as we did in Section 3.1.2.

10

Stitch Haskell ’20, August 27, 2020, Virtual Event, USA

data Length :: ∀a n. Vec a n→ Type where
LZ :: Length VNil
LS :: Length xs→ Length (x :> xs)

subst :: ∀ctx s t . Exp ctx s→ Exp (s :> ctx) t → Exp ctx t
subst e = go LZ where
go :: Length (lcls :: Ctx n) → Exp (lcls +++ s :> ctx) t0
→ Exp (lcls +++ ctx) t0

go len (Var v) = var len v
go len (Lam ty body) = Lam ty (go (LS len) body)
. . . -- other forms are treated homomorphically

var :: Length (lcls :: Ctx n) → Elem (lcls +++ s :> ctx) t0
→ Exp (lcls +++ ctx) t0

var LZ EZ = e -- no locals; substitute

var LZ (ES v) = Var v -- no locals; decrement

var (LS) EZ = Var EZ -- var is local; no change

var (LS len) (ES v) = shift (var len v) -- recur

Figure 6. Indexed substitution

8 Evaluation with an Indexed AST
Writing evaluators is where the indexed AST really shines:

we essentially can not get it wrong.

A type-indexed AST allows us to easily write a tagless in-
terpreter, where a value does not need to be stored with a run-

time tag that indicates the value’s type. To see the problem,

imagine an unindexedAST and a function eval::Exp→ Value.
The Value type would have to be a sum type with several

constructors, say, for integer, Boolean, and function values.

This means that every time we extract a value, we have to

check the tag, a potentially costly step at runtime. However,

with our indexed expression type, we can evaluate to a type

Value ty , where Value is this type family:

type family Value t where
Value TInt = Int
Value TBool = Bool
Value (a :→ b) = Exp VNil a→ Exp VNil b

Values are accordingly tagless—no runtime check needs to be

performed when inspecting one. Tagless interpreters have

been studied at some length [9, 43, 60], and we will not

explore this aspect of Stitch further.

Evaluation is as one might expect. The interesting part is

about substitution, which we focus on next.

8.1 Substitution
Substitution is the bane of implementors using de Bruijn

indices. Once again, the type indices save us from making

errors—there seems to be no real way to go wrong, and the

type errors that we encounter gently guide us to the right

answer. The final result is in Figure 6.

The subst function takes an expression e of type s and
another expression with a free variable of type s and substi-

tutes e into the latter expression. The subst function’s type
requires that the variable to be substituted have a de Bruijn

index of 0, as is needed during β-reduction. However, as
anyone who has proved a substitution lemma knows, we

must generalize this type to get a powerful enough recursive

function to do the job.

Note that the type of subst is precisely the shape of a sub-

stitution lemma: that if Γ ⊢ e1 : σ and Γ, x:σ ⊢ e2 : τ , then
Γ ⊢ e2[e1/x] : τ . A proof of this lemma must strengthen

the induction hypothesis to allow bound local variables,

leading to a proof of this stronger claim: if Γ ⊢ e1 : σ and

Γ, x:σ , Γ′ ⊢ e2 : τ , then Γ, Γ′ ⊢ e2[e1/x] : τ . If we call Γ′ lcls
and Γ ctx , this strengthened induction hypothesis matches

up with the type of the helper function go. (Recall that con-
texts in the implementation are in reverse order to those

in the formalism.) As one implements such a function, this

correspondence is a strong hint that the function type is

correct.

The go function takes one additional argument: a value of

type Length lcls. The Length type is included in Figure 6; val-

ues are Peano naturals that describe the length of a vector.
10

This extra piece is necessary as local variables get treated

differently in a substitution than do variables from the outer

context. The number of locals informs the var function when

to substitute, when to shift, and when to leave well enough

alone. Pierce [56, Chapter 6] offers an accessible introduction

to the delicate operation of substitution in the presence of

de Bruijn indices, and a full exploration of this algorithm

would take us too far afield; suffice it to say that any misstep

in var would be caught by GHC’s type checker.

For an example of a plausible mistake and its error mes-

sage, imagine we forgot to call shift (explained below) in the

last equation of the var helper function. GHC produces an

error saying it

Could not deduce: (xs +++ ctx) ∼∼ (x :> (xs +++ ctx))
from the context: (. . . , lcls ∼∼ (x :> xs))
. . .

Expected type: Exp (lcls +++ ctx) t0
Actual type: Exp (xs +++ ctx) t0

We can see here that the actual type of var len v does not

account for adding the new variable, x , to the context. This

must mean we need to add that variable; the way to do so is

via a shifting operation, which we cover next.

8.2 Shifting
As hinted at previously, substitution with de Bruijn indices

is subtle not only because it is hard to keep track of which

10
Although vectors are indexed by their length, that index is a compile-time

natural only. To get the length of a vector at runtime, it is still necessary to

recur down the length of the vector.

11

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

class Shiftable (a :: ∀n.Ctx n→ Ty → Type) where
shifts :: Length prefix → a ctx ty → a (prefix +++ ctx) ty
shifts0 :: a VNil ty → a prefix ty -- closed exprs only

unshifts :: Length prefix → a (prefix +++ ctx) ty
→ Maybe (a ctx ty) -- needed for CSE

instance Shiftable Exp where . . .
instance Shiftable Elem where . . .

-- Common case: shifting by one

shift :: ∀(a :: ∀n.Ctx n→ Ty → Type) ctx t ty .
Shiftable a⇒ a ctx ty → a (t :> ctx) ty

shift = shifts (LS LZ)

Figure 7. De Bruijn index shifting

variable one is substituting, but also because the expression

being substituted suddenly appears in a new context and

accordingly may require adjustments to its indices. This

process is called shifting. If we have an expression #1 #0
(where both variables are free) and wish to substitute into

an expression with an additional bound variable, we must

shift to #2 #1. I have intentionally kept the colors consistent
during the shift, as the identity of these variables does not
change—just the index does.

Shifting is an operation that makes sense both on full

expressions Exp and also on indices Elem directly. We will

discover that both of these are sometimes necessary when

performing common-subexpression elimination (CSE, Sec-

tion 9), and so we generalize the notion of shifting by intro-

ducing a type class, presented in Figure 7.

The first detail to notice here is that Shiftable classifies
a polykinded type variable a—note the ∀n in a’s kind. This
gives Shiftable a higher-rank kind. GHC deals with this exotic

species in stride; the only challenge is that GHC will never

infer a variable to have a polykind, and so all introductions of

amust be written with a kind annotation. The polymorphism

in the kind of a is essential here because, as a stand-in for

Exp or Elem, a must be able to be applied to contexts of any

length. Without this polymorphism, it would be impossible

to write the Shiftable class.
As before, the implementation of these instances is straight-

forward, once we have written down the types and can be

guided by GHC’s type checker.

8.3 Shifting Closed Expressions
The Shiftable class includes a method shifts0, specializing
shifts to work over closed expressions. Closed expressions

are a special case for shifting, because we can prove that no

variables need to be shifted. And yet, shifting also changes

the type of the expression (from Exp VNil ty to Exp ctx ty),
so we can omit the call to shifts0. This method is needed

in the processing of user-defined globals, a feature Stitch

shifts0Exp :: ∀prefix ty . Exp VNil ty → Exp prefix ty
shifts0Exp = . . .

-- Short-circuit the no-op shifts0Exp:
{−# noinline shifts0Exp #−}

{−# rules shifts0Exp shifts0Exp = unsafeCoerce #−}

Figure 8. Shifting closed expressions should be trivial

supports, but a full description of which would distract from

our main goal.

See Figure 8, which defines shifts0Exp, the definition of

shifts0 in the Shiftable instance for Exp. This function must

tiresomely walk the entire structure of its argument in order

to do nothing. The problem is the change in type; the only

way to convince GHC that no action needs to be taken is a

full recursive traversal.

This is disappointing. We want our types to help prevent

errors, not require extra runtime work. It is conceivable that

a language with full dependent types would support a proof

that shifts0Exp has no runtime effect, but this is still hard to

imagine, given that the output of shifts0Exp has a different

type than its input.

The fullness of GHC’s feature set comes to the rescue here.

GHC supports rewrite rules [48], which allow a programmer

to provide arbitrary term rewriting rules that GHC applies

during its optimization passes. These rules are type-checked

to make sure both sides have the same type, but no checking

is done for semantic consistency. It is just the ticket for us

here: we can fix the types up with an unsafeCoerce and trust
our by-hand analysis that shifts0Exp really does nothing at

runtime. The noinline is necessary to force GHC not to

inline the function, so that the rewrite rule can trigger.

Is this design a win or a loss? I am not sure. It surely has

aspects of a loss because the compiler can not figure out that

shifts0Exp is pointless. On the other hand, the workaround

is very easy and fully effective. And, even in a language with

a richer type system than GHC’s Haskell, it is not clear we

can do better.

9 Common-Subexpression Elimination
Having covered the basic necessities of an interpreter, we

now explore an extension, as evidence that we can still im-

plement non-trivial transformations over an indexed AST.

Common-subexpression elimination is a standard optimiza-

tion pass, which identifies expressions with common subex-

pressions, transforming these to use a let-bound variable

instead. A full description of the CSE algorithm is unneces-

sary here but is well documented in the Stitch’s CSE module;

instead, we will focus on the (indexed) data structures used

to power the CSE algorithm.

The key data structure needed for CSE is a finite map

that uses expressions as keys. Using such a map, we can

12

Stitch Haskell ’20, August 27, 2020, Virtual Event, USA

class IHashable (t :: k → Type) where
ihashWithSalt :: Int → t a→ Int

instance TestEquality (Exp ctx) where . . .
instance . . .⇒ IHashable (Exp (ctx :: Ctx n)) where . . .

data IHashMap :: ∀k . (k → Type) → (k → Type) → Type

insert :: (TestEquality k, IHashable k)
⇒ k i → v i → IHashMap k v → IHashMap k v

lookup :: (TestEquality k, IHashable k)
⇒ k i → IHashMap k v → Maybe (v i)

map :: (∀i. v1 i → v2 i) → IHashMap k v1 → IHashMap k v2

type ExpMap ctx a = IHashMap (Exp ctx) a

Figure 9. Key definitions for indexed HashMaps

store what expressions we have seen so far in order to find

duplicates, and we can map expressions to fresh let-bound
variables. The challenge here is that we need to make sure

an expression of type ty maps to a variable of type ty ; failing
to do so would lead the CSE algorithm not to pass GHC’s

type checker.

Naturally, we want the CSE algorithm to be reasonably

efficient. Instead of creating our own mapping structure, we

would like to use the existing optimized HashMap structure

from the unordered-containers library, a widely-used con-

tainers implementation. However, a HashMap requires that

all the keys in the map have the same type. This is usually

a desired property, but not in our case here: the different

keys will all be Exps, but they may have different type in-

dices. The solution is to alter HashMap to work with indexed
types. To implement this idea, I took the source code from

unordered-containers, made a few small changes to the types,

and then simply fixed the errors that GHC reported. Some

key definitions are in Figure 9.

9.1 Indexed Maps
Just as a traditional mapping structure must depend on a

key’s Eq instance, an indexed mapping structure must de-

pend on a key’s TestEquality instance. Our Exp type naturally
is a member of the TestEquality class: if two expressions are

equal (in a shared context ctx), their types are, too.
We also must generalize the Hashable class used for tradi-

tional HashMaps so that we can state that Exp has a hash, no
matter its type. This is straightforward to do; see IHashable.

In the definition of IHashMap, we must index the map by

the type constructors, not the concrete types. Note that in

the definition for ExpMap, the key is Exp ctx , not Exp ctx ty .
In this way, a map can contain expressions of many types.

Accordingly, the insert and lookup functions work by apply-

ing the key type k and value type v to an index i. (Note: the k
in the definition of IHashMap is the kind of the index, not the
key.) The magic here is that IHashMap is not itself indexed

by i, so we can look up k i, for any i, in a IHashMap k v ,
retrieving (perhaps) a v i.

Though not used in CSE, I have included here the type of

the map function. Its function argument must be polymor-

phic in the index i. This is because the function must work

over all values stored in the map; these values, of course, may

have different indices. With a higher-rank type, however,

map (and other functions) are straightforward to adapt to

the indexed setting.

9.2 Experience Report
The adaptation of HashMap into an indexed setting was

shockingly easy. Once I had committed to adapting the ex-

isting implementation, it took me roughly 2 hours to up-

date the 2.5k lines of code implementing lazy HashMaps and
HashSets. The process flowed as we all imagine typed refac-

toring should: I changed the datatype definitions and just

followed the errors. It all worked splendidly once it compiled.

I was aided by the fact that TestEquality is already exported

from GHC’s set of libraries and that this class has just the

right shape for usage in a finite map structure.

Many functions, such as map, require higher-rank types.

Interestingly, several class instance definitions also require a

higher rank, but these require a higher-rank constraint, also
known as a quantified constraint [6]. For example, here are

the instance heads for two instances of IHashMap:

instance (TestEquality k, IHashable k
,∀i. Read (k i),∀i. Read (v i)) ⇒ Read (IHashMap k v)

instance
(∀i. Show (k i),∀i. Show (v i)) ⇒ Show (IHashMap k v)

In order to parse the contents of a IHashMap k v , we need
to be able to read elements of type k i and v i, for any i, and
similarly for pretty-printing. With quantified constraints, we

can express this fact directly, and type-checking proceeds

without a hiccup.

The CSE implementation overall was also agreeably easy.

While the design of the algorithm took some careful thought,

working with indexed types was an aid to the process, not an

obstacle. The way Exp’s indices track contexts, in particular,

was critical, because any recursive algorithm over Exps must

occasionally change contexts; it would have been very easy

to forget a shift or unshift during this process without GHC’s

type checker helping me get it right.

10 Discussion
10.1 let Should Sometimes be Generalized
Type inference in the presence of GADTs is hard [12, 50, 51,

64]. One of the confounding effects of GADTs is that GHC

does not generalize local let-bound variables in a module

with the MonoLocalBinds language flag enabled, which is

13

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

implied by the GADTs extension [63].
11
However, this lack of

generalization stymied my implementation.

In the adaptation of HashMap to IHashMap, it was nec-
essary to make many traversal functions have higher-rank

types, likemap in Section 9.1. Other functions in theHashMap
library use these traversals with locally defined helper func-

tions, which generally lacked type signatures. However, be-

cause lets were not generalized in the module, the type of

the let-bound function was not polymorphic enough to be

used as the argument to the higher-rank traversal function.

While adding the type signatures to the local functions was

not terribly difficult, it was tedious, and I opted instead to

specify NoMonoLocalBinds, to good effect.

10.2 Dependent Types
To my surprise, this project did not strongly want for full

dependent types. As we have seen, we needed a few single-

tons. A language with support for dependent types would

naturally not need these singletons. However, one of the

real pain points for singletons—costly runtime conversions

between singletons and unrefined types—arose in only one

place: the calculation of what color is used to render a de

Bruijn index. Another big pain point is code duplication, but

that problem, too, was almost entirely absent from Stitch.

Despite being the author of the singletons library [19] that

automates working with them, I was not tempted to use it.

10.3 Type Errors and Editor Integration
One aspect in which GHC/Haskell lags behind other depen-

dently typed languages is in its editor integration. Idris, for

example, supports interactive type errors, allowing a user to

explore typing contexts and other auxiliary information in

reading an error [15]. Idris, Agda, and Coq all allow a pro-

grammer to focus on one goal at a time. The closest feature

in GHC is its support for typed holes [22], where a program-

mer can replace an expression with an underscore and GHC

will tell you the desired type of the expression and suggest

type-correct replacements.

The extra features in other language systems would have

been helpful, but their lack did not bite in this development.

I used typed holes a few times, and I had to comment out

code in order to focus on smaller sections, but these were

not burdens. Type errors were often screen-filling, but it was

easy enough to discern the key details without being over-

whelmed. So, while I agree that GHC has room to improve

in this regard, its current state is still quite usable.

10.4 Related Work
The basic idea embodied in Stitch is not new. Though written

before the invention of indexed data types, Pfenning and

11
More precisely, GHC does not generalize local let-bound variables whose

right-hand side mentions a variable bound from an outer scope. In other

words, if the local definition can be easily lifted out to top-level, GHC still

does generalize it.

Lee [54] consider an encoding of System F in a third-order

polymorphic λ-calculus (F3); only well-typed programs are

representable. Their encoding is very much a foreshadow-

ing of more recent papers. Perhaps the first elucidation of

the technique of restricting evaluation only to well-typed

ASTs is by Augustsson and Carlsson [4], who implemented

their interpreter in Cayenne [3]. The idea was picked up

by Pašalić et al. [43], who use a similar example to power

the introduction of Meta-D, a language useful for writing in-

dexed ASTs. Other work principally focusing on an indexed

AST includes that by Chen and Xi [11], which includes an

indexed CPS transform, implemented in ATS [70]. An imple-

mentation of this idea in Haskell is described by Guillemette

and Monnier [24], who embed System F; their encoding is

limited by the lack of, e.g., rich kinds in Haskell at the time,

and their focus is more on compiler transformations than

on type checking. More recently, an indexed AST has been

encoded in Agda [1, 2]; the authors’ focus in both works

cited is in generating correct definitions and proofs without

boilerplate. Kokke et al. [31] also uses this example; notable

there is the way an executable interpreter is extracted from

the type safety proof of the language. Going beyond just em-

bedding the λ-calculus, Weirich [67] embeds a richly typed

AST for regular expressions in Haskell. The indexed AST

idea comes up, in passing or with focus, in many more works

beyond these, both in the folklore and in published literature.

The real focus of this paper is not an indexed AST, how-

ever; it is to serve as a tutorial to the advanced features of Has-

kell. In this space, this paper’s contribution is indeed novel:

to my knowledge, this is the first formally peer-reviewed

work aiming to teach these techniques. There is educational

material in the folklore and posted online [26, 34]. A tutorial

focusing on an indexed AST embedding in Idris [7] is part

of that language’s online documentation [62], and Benton

et al. [5] use an indexed AST to explore intrinsic-verification

features of Coq. In contrast to those materials, this paper is

set in the context of a complete software artifact that is a

practical tool for teaching the operation of the λ-calculus,
with a user-oriented executable. The goal in doing so is to

demonstrate that it is indeed possible to build relatively mun-

dane software components, such as a REPL or parser, using

fancy types in Haskell—a fact not necessarily yet appreciated

by the broader programming language community.

10.5 Conclusion
I have presented Stitch, a simply typed λ-calculus interpreter,
amenable for pedagogic use and implemented using an in-

dexed AST. This paper has explored the implementation and

described the features of Haskell that power the encoding

and enable Stitch to be written. I have reported on Haskell’s

support for richly typed work such as Stitch, concluding that

Haskell is ready for serious work with fancy types.

14

Stitch Haskell ’20, August 27, 2020, Virtual Event, USA

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grant No. 1704041. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

References
[1] Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and

James McKinna. 2018. A Type and Scope Safe Universe of Syntaxes

with Binding: Their Semantics and Proofs. Proc. ACM Program. Lang. 2,
ICFP, Article 90 (July 2018), 30 pages. https://doi.org/10.1145/3236785

[2] Guillaume Allais, James Chapman, Conor McBride, and James McK-

inna. 2017. Type-and-scope Safe Programs and Their Proofs. In

Proceedings of the 6th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs (CPP 2017). ACM, New York, NY, USA, 195–207.

https://doi.org/10.1145/3018610.3018613

[3] Lennart Augustsson. 1998. Cayenne—a language with dependent

types. In Proc. ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98). ACM, 239–250.

[4] Lennart Augustsson and Magnus Carlsson. 1999. An exercise in depen-

dent types: A well-typed interpreter. (1999). http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.39.2895&rep=rep1&type=pdf Un-

published manuscript.

[5] Nick Benton, Chung-Kil Hur, Andrew J. Kennedy, and Conor McBride.

2012. Strongly Typed Term Representations in Coq. Journal of Au-
tomated Reasoning 49, 2 (01 Aug 2012), 141–159. https://doi.org/10.

1007/s10817-011-9219-0

[6] Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S.

Oliveira, and Philip Wadler. 2017. Quantified Class Constraints. In

Proceedings of the 10th ACM SIGPLAN International Symposium on
Haskell (Haskell 2017). ACM, New York, NY, USA, 148–161. https:

//doi.org/10.1145/3122955.3122967

[7] Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-

gramming language: Design and implementation. J. Funct. Prog. 23
(2013).

[8] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and

Stephanie Weirich. 2016. Safe Zero-cost Coercions for Haskell. J.
Funct. Program. 26 (2016), 1–79.

[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally

tagless, partially evaluated: Tagless staged interpreters for simpler

typed languages. J. Funct. Program. 19, 5 (Sept. 2009), 509–543.
[10] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyon Jones.

2005. Associated Type Synonyms. In International Conference on Func-
tional Programming (ICFP ’05). ACM.

[11] Chiyan Chen and Hongwei Xi. 2003. Implementing Typeful Program

Transformations. In Proceedings of the 2003 ACM SIGPLANWorkshop on
Partial Evaluation and Semantics-based Program Manipulation (PEPM
’03). ACM, New York, NY, USA, 20–28. https://doi.org/10.1145/777388.

777392

[12] Sheng Chen and Martin Erwig. 2016. Principal Type Inference for

GADTs. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’16). ACM,

New York, NY, USA, 416–428. https://doi.org/10.1145/2837614.2837665

[13] James Cheney and Ralf Hinze. 2003. First-Class Phantom Types. Tech-
nical Report. Cornell University.

[14] Adam Chlipala. 2008. Parametric Higher-order Abstract Syntax for

Mechanized Semantics. In Proceedings of the 13th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’08). ACM, New

York, NY, USA, 143–156. https://doi.org/10.1145/1411204.1411226

[15] David Raymond Christiansen. 2015. A Pretty Printer that Says What it

Means. Talk, Haskell ImplementorsWorkshop, Vancouver, BC, Canada.

https://www.youtube.com/watch?v=m7BBCcIDXSg

[16] Nicolaas Govert de Bruijn. 1972. Lambda calculus notation with name-

less dummies, a tool for automatic formula manipulation, with ap-

plication to the Church-Rosser theorem. Indagationes Mathemati-
cae (Proceedings) 75, 5 (1972), 381–392. https://doi.org/10.1016/1385-

7258(72)90034-0

[17] Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and
Practice. Ph.D. Dissertation. University of Pennsylvania.

[18] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and

Stephanie Weirich. 2014. Closed Type Families with Overlapping

Equations. In Principles of Programming Languages (POPL ’14). ACM.

[19] Richard A. Eisenberg and StephanieWeirich. 2012. Dependently Typed

Programming with Singletons. In ACM SIGPLAN Haskell Symposium.

[20] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan Ahmed.

2016. Visible Type Application. In European Symposium on Program-
ming (ESOP) (LNCS). Springer-Verlag.

[21] Martin Erwig and Simon Peyton Jones. 2000. Pattern Guards and Trans-

formational Patterns. InHaskell Workshop 2000 (haskell workshop 2000
ed.). https://www.microsoft.com/en-us/research/publication/pattern-

guards-and-transformational-patterns/

[22] Matthías Páll Gissurarson. 2018. Suggesting Valid Hole Fits for
Typed-Holes in Haskell. Master’s thesis. Chalmers University of

Technology, University of Gothenburg. https://mpg.is/papers/

gissurarson2018suggesting-msc.pdf

[23] Andrew D. Gordon. 1994. A mechanisation of name-carrying syntax

up to alpha-conversion. In Higher Order Logic Theorem Proving and Its
Applications, Jeffrey J. Joyce and Carl-Johan H. Seger (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 413–425.

[24] Louis-Julien Guillemette and Stefan Monnier. 2008. A type-preserving

compiler in Haskell. In Proc. 13th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’08). ACM, 75–86.

[25] AdamGundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D.
Dissertation. University of Strathclyde.

[26] Hiromi Ishii. 2014. Dependent Types in Haskell. School of Has-

kell blog. https://www.schoolofhaskell.com/user/konn/prove-your-

haskell-for-great-safety/dependent-types-in-haskell

[27] Mark P. Jones. 1995. Functional Programming with Overloading and

Higher-Order Polymorphism. In Advanced Functional Programming,
Johan Jeuring and Erik Meijer (Eds.). LNCS, Vol. 925. Springer Verlag.

[28] Mark P. Jones. 2000. Type Classes with Functional Dependencies. In

European Symposium on Programming.
[29] Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Si-

mon Peyton Jones. 2015. GADTs meet their match. In International
Conference on Functional Programming (ICFP ’15). ACM.

[30] Edward Kmett. 2012. bound. Haskell package. https://github.com/

ekmett/bound/

[31] Wen Kokke, Jeremy G. Siek, and Philip Wadler. 2020. Programming

Language Foundations in Agda. Science of Computer Programming 194

(2020), 102440. https://doi.org/10.1016/j.scico.2020.102440

[32] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A

Practical Design Pattern for Generic Programming. In Workshop on
Types in Languages Design and Implementation. ACM.

[33] Ralf Lämmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate

With Class: Extensible Generic Functions. In ICFP.
[34] Justin Le. 2018. Introduction to Singletons. (2018). https://blog.jle.im/

entry/introduction-to-singletons-3.html

[35] Daan Leijen. 2001. Parsec: a fast combinator parser. Technical Report
UU-CS-2001-26. University of Utrecht.

[36] Sam Lindley and Conor McBride. 2013. Hasochism: the pleasure and

pain of dependently typed Haskell programming. In ACM SIGPLAN
Haskell Symposium.

[37] Andres Löh. 2012. lhs2TeX. Haskell package. https://www.andres-

loeh.de/lhs2tex/

15

https://doi.org/10.1145/3236785
https://doi.org/10.1145/3018610.3018613
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.2895&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.2895&rep=rep1&type=pdf
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/777388.777392
https://doi.org/10.1145/777388.777392
https://doi.org/10.1145/2837614.2837665
https://doi.org/10.1145/1411204.1411226
https://www.youtube.com/watch?v=m7BBCcIDXSg
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://www.microsoft.com/en-us/research/publication/pattern-guards-and-transformational-patterns/
https://www.microsoft.com/en-us/research/publication/pattern-guards-and-transformational-patterns/
https://mpg.is/papers/gissurarson2018suggesting-msc.pdf
https://mpg.is/papers/gissurarson2018suggesting-msc.pdf
https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-types-in-haskell
https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-types-in-haskell
https://github.com/ekmett/bound/
https://github.com/ekmett/bound/
https://doi.org/10.1016/j.scico.2020.102440
https://blog.jle.im/entry/introduction-to-singletons-3.html
https://blog.jle.im/entry/introduction-to-singletons-3.html
https://www.andres-loeh.de/lhs2tex/
https://www.andres-loeh.de/lhs2tex/

Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

[38] José Pedro Magalhães. 2012. The Right Kind of Generic Programming.

(2012). To appear at WGP.

[39] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh.

2010. A generic deriving mechanism for Haskell. In Proceedings of the
3rd ACM Haskell Symposium on Haskell (Haskell ’10). ACM.

[40] Conor McBride. 2011. The Strathclyde Haskell Enhancement. https:

//personal.cis.strath.ac.uk/conor.mcbride/pub/she/.

[41] Stefan Monnier and David Haguenauer. 2010. Singleton types here,

singleton types there, singleton types everywhere. In Programming
languages meets program verification (PLPV ’10). ACM.

[42] Dominic Orchard and Tom Schrijvers. 2010. Haskell Type Constraints

Unleashed. In Functional and Logic Programming, Matthias Blume,

Naoki Kobayashi, and Germán Vidal (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 56–71.

[43] Emir Pašalić, Walid Taha, and Tim Sheard. 2002. Tagless Staged In-

terpreters for Typed Languages. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming (ICFP
’02). ACM, New York, NY, USA, 218–229. https://doi.org/10.1145/

581478.581499

[44] Simon Peyton Jones. 2003. Wearing the Hair Shirt: A Retrospective

on Haskell. Invited talk at POPL.

[45] Simon Peyton Jones,Mark Jones, and ErikMeijer. 1997. Type classes: an

exploration of the design space. In Haskell Workshop, John Launchbury

(Ed.). Amsterdam, Netherlands.

[46] Simon Peyton Jones and John Launchbury. 1991. Unboxed values as

first class citizens. In FPCA (LNCS), Vol. 523. 636–666.
[47] Simon Peyton Jones and Mark Shields. 2004. Lexically-scoped type

variables. (2004). http://research.microsoft.com/en-us/um/people/

simonpj/papers/scoped-tyvars/ Draft.

[48] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing

by the Rules: Rewriting as a practical optimisation technique in GHC.

In Proceedings of the Haskell Workshop.
[49] Simon Peyton Jones, Dimitrios Vytiniotis, StephanieWeirich, andMark

Shields. 2007. Practical type inference for arbitrary-rank types. Journal
of Functional Programming 17, 1 (Jan. 2007).

[50] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and

Geoffrey Washburn. 2006. Simple unification-based type inference for

GADTs. In International Conference on Functional Programming (ICFP
’06). ACM.

[51] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. 2004.

Wobbly types: type inference for generalised algebraic data types. Tech-
nical Report MS-CIS-05-26. University of Pennsylvania.

[52] Simon Peyton Jones, Stephanie Weirich, Richard A. Eisenberg, and

Dimitrios Vytiniotis. 2016. A reflection on types. In A list of successes
that can change the world. Springer. A festschrift in honor of Phil

Wadler.

[53] Frank Pfenning and Conal Elliott. 1988. Higher-order Abstract Syntax.

In Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation (PLDI ’88). ACM, New York, NY,

USA, 199–208. https://doi.org/10.1145/53990.54010

[54] Frank Pfenning and Peter Lee. 1989. LEAP: A language with eval and

polymorphism. In TAPSOFT ’89, J. Díaz and F. Orejas (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 345–359.

[55] Matthew Pickering, Gergő Érdi, Simon Peyton Jones, and Richard A.

Eisenberg. 2016. Pattern Synonyms. In ACM SIGPLAN Haskell Sympo-
sium. ACM.

[56] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT

Press, Cambridge, MA.

[57] Andrew M. Pitts. 2003. Nominal logic, a first order theory of names

and binding. Information and Computation 186, 2 (2003), 165 – 193.

https://doi.org/10.1016/S0890-5401(03)00138-X Theoretical Aspects of

Computer Software (TACS 2001).

[58] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,

Thomas Ridge, Susmit Sarkar, and Rok Strniša. 2010. Ott: Effective

tool support for the working semanticist. Journal of Functional Pro-
gramming 20, 1 (Jan. 2010).

[59] Jan Stolarek, Simon Peyon Jones, and Richard A. Eisenberg. 2015.

Injective Type Families for Haskell. In Haskell Symposium (Haskell ’15).
ACM.

[60] Walid Taha, Henning Makholm, and John Hughes. 2001. Tag elimina-

tion and Jones-optimality. In Programs as Data Objects, Olivier Danvy
and Andrzej Filinski (Eds.). LNCS, Vol. 2053. Springer Verlag.

[61] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières.

2012. Safe Haskell. In Proceedings of the 2012 Haskell Symposium
(Haskell ’12). Association for Computing Machinery, New York, NY,

USA, 137–148. https://doi.org/10.1145/2364506.2364524

[62] The Idris Team. 2017. Example: The Well-Typed Interpreter. The Idris

Tutorial. http://docs.idris-lang.org/en/latest/tutorial/interp.html

[63] Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. 2010.

Let Should Not Be Generalized. In Types in Language Design and Im-
plementation (TLDI ’10). ACM.

[64] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin

Sulzmann. 2011. OutsideIn(X): Modular Type Inference with Local

Assumptions. Journal of Functional Programming 21, 4-5 (Sept. 2011).

[65] Philip Wadler. 1987. Views: A Way for Pattern Matching to Co-

habit with Data Abstraction. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL
’87). Association for Computing Machinery, New York, NY, USA,

307–313. https://doi.org/10.1145/41625.41653

[66] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. Sys-

tem FC with Explicit Kind Equality. In International Conference on
Functional Programming (ICFP ’13). ACM.

[67] Stephanie Weirich. 2017. The Influence of Dependent Types. Keynote,

POPL ’17. https://www.youtube.com/watch?v=rflCw9bT4_0

[68] Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de

Amorim, and Richard A. Eisenberg. 2017. A Specification for De-

pendent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article
31 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110275

[69] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. 2011. Binders

Unbound. In Proceedings of the 16th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’11). ACM, New York, NY,

USA, 333–345. https://doi.org/10.1145/2034773.2034818

[70] Hongwei Xi. 2004. Applied Type System. In Types for Proofs and
Programs, Stefano Berardi, Mario Coppo, and Ferruccio Damiani (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 394–408.

[71] Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive

datatype constructors. In Principles of Programming Languages (POPL
’03). ACM.

[72] Ningning Xie and Richard A. Eisenberg. 2018. Coercion Quantification.

In Haskell Implementors’ Workshop.
[73] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,

Dimitrios Vytiniotis, and José Pedro Magalhães. 2012. Giving Haskell

a promotion. In Types in Language Design and Implementation (TLDI
’12). ACM.

16

https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://doi.org/10.1145/581478.581499
https://doi.org/10.1145/581478.581499
http://research.microsoft.com/en-us/um/people/simonpj/papers/scoped-tyvars/
http://research.microsoft.com/en-us/um/people/simonpj/papers/scoped-tyvars/
https://doi.org/10.1145/53990.54010
https://doi.org/10.1016/S0890-5401(03)00138-X
https://doi.org/10.1145/2364506.2364524
http://docs.idris-lang.org/en/latest/tutorial/interp.html
https://doi.org/10.1145/41625.41653
https://www.youtube.com/watch?v=rflCw9bT4_0
https://doi.org/10.1145/3110275
https://doi.org/10.1145/2034773.2034818

	Abstract
	1 A Siren from the Folklore
	1.1 Stitch
	1.2 Contributions

	2 Introducing Stitch
	2.1 The Stitch REPL
	2.2 De Bruijn Indices
	2.3 A Slightly Longer Example: Primality Checking

	3 Fancy-Typed Utilities
	3.1 Length-Indexed Vectors
	3.2 Singletons

	4 Stitch Types
	5 Scope-Checked Parsing
	5.1 A Heterogeneous Reader Monad

	6 The Type-Indexed Expression AST
	7 The Sound Type-Indexed Type Checker
	8 Evaluation with an Indexed AST
	8.1 Substitution
	8.2 Shifting
	8.3 Shifting Closed Expressions

	9 Common-Subexpression Elimination
	9.1 Indexed Maps
	9.2 Experience Report

	10 Discussion
	10.1 let Should Sometimes be Generalized
	10.2 Dependent Types
	10.3 Type Errors and Editor Integration
	10.4 Related Work
	10.5 Conclusion

	Acknowledgments
	References

