
Constrained	Type	Families
Richard	A.	Eisenberg	
Bryn	Mawr	College	

rae@cs.brynmawr.edu

Wednesday,	6	September	2017	
ICFP	

Oxford,	UK

J.	Garrett	Morris	
University	of	Edinburgh	
University	of	Kansas	
garrett@ittc.ku.edu







Two	main	contributions:

1. Discovering	the	problem:		
GHC	assumes	all	type	families	
are	total.	

2. First	type	safety	proof	with	
non-termination	and	non-
linear	patterns.

�
.



But	first:	
An	introduction	to	

type	families



In	Haskell,	
type	families	

=	
type	functions

�. . � �. � . . �C �
. . �. � � .



class	Collects	c	where	
		type	Elem	c	
		empty		::	c	

		insert	::	Elem	c	!	c	!	c



instance	Collects	[a]	where	
		type	Elem	[a]	=	a	
		...	

instance	Collects	Word	where	
		type	Elem	Word	=	Bool	
		...

= . �.



type	family	Elem	c	
class	Collects	c	where	
		empty		::	c	

		insert	::	Elem	c	!	c	!	c

. � � � � .



data	Z	
data	S	n	

type	family	Pred	n	
type	instance	Pred	(S	n)	=	n	
type	instance	Pred	Z					=	Z

. � . � �
. � .



data	Z	
data	S	n	

type	family	Pred	n	where	
		Pred	(S	n)	=	n	
		Pred	n					=	n

� � .



(originally	suggested	by	
Chakravarty	et	al.,	ICFP	’05)

Our	new	old	idea:	
Constrained	Type	Families



A	ground	type	has	no	type	families.

A	total	type	family,	when	applied	to	
ground	types,	always	equals	some	

ground	type.

Definitions



Constrained	Type	Families

• All	partial	type	families	are	
associated	

• Class	constraint	necessary	to	use	
an	associated	type	family



Example

thwack	::	
thwack	=	...

F	atype family

F	a	!	Maybe	a



Example

thwack	::	
thwack	=	...

F	atype

F	a	!	Maybe	a

class	CF	a	where

CF	a	⇒



The	Totality	Trap



Wat	#1

. � �.� !

Ok,	modules	loaded:	Wat.

x	=	fst	(5,	⊥	::	F	Int)

F	atype family



Wat	#1

. � �.� !

x	=	fst	(5,	⊥	::	F	Int)

error:	No	instance	for	(CF	Int)

F	atype
class	CF	a	where



Wat	#2
type	family	EqT	a	b	where	
		EqT	a	a	=	Char	
		EqT	a	b	=	Bool

Wat.hs:	error:	...

f	::	a	!	EqT	a	(Maybe	a)	
f	_	=	False

- � . � !�
� . � !  

- � �C �  
. � � . � !



Wat	#2
type	family	EqT	a	b	where	
		EqT	a	a	=	Char	
		EqT	a	b	=	Bool

f	::	a	!	EqT	a	(Maybe	a)	
f	_	=	False

Ok,	modules	loaded:	NoWat.



Why	Wat	#2?
type	family	Maybes	a	
type	instance	Maybes	a	=	
																	Maybe	(Maybes	a)

f	::	a	!	EqT	a	(Maybe	a)
C �.�↦�,. � $�

.�'�,. �.!



Wat	#3

justs	=	Just	justs
Wat.hs:	error:	
• Cannot	construct	the 
infinite	type: 
		a	~	Maybe	a

� �
.

type	family	Maybes	a	
type	instance	Maybes	a	=	
																	Maybe	(Maybes	a)



Red	herring:	
“Just	ban	Maybes!”

Sometimes	we	
need	loopy	type	families.



Wat	#3

justs	=	Just	justs
Wat.hs:	error:	
• Cannot	construct	the 
infinite	type: 
		a	~	Maybe	a

� � �
� �

.

instance	CMaybes	a	⇒	CMaybes	a	where	
		type	Maybes	a	=	Maybe	(Maybes	a)



The	fundamental	problem:

GHC	today	assumes	all	
type	families	are	total.

Constrained	type	families	fix	this.



Why	does	this	fix	the	wats?

The	class	constraint	
restricts	the	type	
family	domain.



First	known	proof	
of	consistency	with	
non-linear	patterns	

and	
non-termination.



Wrinkle:	
Total	type	families

Total	type	families	need	
not	be	associated.

� � . �



Wrinkle:	
Backward	compatibility
• Infer	constraints	
• New	feature:  

Closed	type	classes	
• Details	in	paper



Open	question:	
Forward	compatibility

• Dependent	types	
• Termination	checking	
• Is	Girard's	paradox	encodable?



Constrained	type	families:
• let	us	escape	the	totality	trap
• prevent	the	usage	of	bogus	types
• make	closed	type	families	more	powerful
• simplify	injective	type	families
• remove	an	unnecessary	feature
• simplify	the	metatheory
• allow	us	to	prove	type	safety



Constrained	Type	Families
Richard	A.	Eisenberg	
Bryn	Mawr	College	

rae@cs.brynmawr.edu

Wednesday,	6	September	2017	
ICFP	

Oxford,	UK

J.	Garrett	Morris	
University	of	Edinburgh	
University	of	Kansas	
garrett@ittc.ku.edu


