
Levity	Polymorphism
Richard	A.	Eisenberg	
Bryn	Mawr	College	

rae@cs.brynmawr.edu

Tuesday,	20	June	2017	
PLDI	

Barcelona,	Spain

Simon	Peyton	Jones	
Microsoft	Research	Cambridge	

simonpj@microsoft.com



How	can	we	compile	
polymorphism	

?

without	losing	
performance



Polymorphism
���������	

choose	::	∀	a.	Bool	!	a	!	a	!	a	
choose	True		t	_	=	t	
choose	False	_	f	=	f	

(+)	::	∀	a.	Num	a	⇒	a	!	a	!	a

�
�	�����������������������

�����
����������



How	can	we	compile	
polymorphism	

?



Answer:  
 

Our	novel	approach: 
kind-directed	compilation

Many	ways



Design	Criteria
• High	performance	
• Type	erasure		
• Support	for	fancy	types	

� ������������������
� -�
-��"�����������
� ��������-�	���	������



Compiling	Polymorphism
• Uniform	representation	

✦ Examples:	Java,	OCaml	
✦ All	polymorphic	values	

represented	by	pointers	
✦ For	OCaml:	machine	ints	

also	work	
✦ Not	performant

�����
�



• Uniform	representation
• Monomorphization

✦ Examples:	C++,	MLton,	Rust		
✦ Polymorphic	definitions	are	

instantiated	
✦ No	fancy	types	
✦ Separate	compilation	is	hard	

Compiling	Polymorphism



• Uniform	representation
• Monomorphization
• Run-time	specialization

✦ C#:	On-demand	instantiation	
✦ TIL	compiler	for	ML:	runtime	

type	analysis	
✦ No	type	erasure

Compiling	Polymorphism



• Uniform	representation
• Monomorphization
• Run-time	specialization
• “Kinds	are	calling	

conventions”

Compiling	Polymorphism

✦ Cyclone,	TALT,	Haskell/GHC



Kinds	are	calling	conventions

choose	::	Bool	!	a	!	a	!	a
let	b	=	...	in	
choose	b	3	4

let	b	=	...	in	
choose	b	3#	4#

��	-��������

����
�����



Kinds	are	calling	conventions

choose	::
Bool	!	a	!	a	!	a
∀	(a	::	Type).

3	::	Int	
Int	::	Type

3#	::	Int#	
Int#	::	#

let	b	=	...	in	
choose	b	3#	4#

���
�������	-



Problems	lurk
• What	is	the	kind	of	(!)?

• Old	solution:	sub-kinding

• But	that	causes	more	problems

not�Type	!	Type	!	Type

Type #

OpenKind



Our	innovation:	

Levity	Polymorphism



Levity	Polymorphism

TYPE	::	Rep	!	Type
data	Rep	=	LiftedRep 
									|	IntRep 
									|	DoubleRep 
									|	...
type	Type	=	TYPE	LiftedRep



Examples
Int					::	Type	
Int					::	TYPE	LiftedRep	
Int#				::	TYPE	IntRep	
Double#	::	TYPE	DoubleRep	
Maybe			::	Type			Type!



Examples
(+)	::	∀	(r	::	Rep).	
							∀	(a	::	TYPE	r).	
							Num	a	⇒	a	!	a	!	a

3	+	4 3#	+	4#

With	levity	polymorphism,	
performant	code	is	easier	to	write.



Examples
choose	::	∀	(r	::	Rep).	
										∀	(a	::	TYPE	r).	
										Bool	!	a	!	a	!	a	
choose	True		t	_	=	t	
choose	False	_	f	=	f

Counter-

This	cannot	be	compiled.	
choose	has	to	store	its	arguments.



Restrictions

Never	store	a	levity-
polymorphic	value

➡ No	levity-polymorphic	variables	
➡ No	levity-polymorphic	function	

arguments
����	-�	����-���



What	can	have	L.P.?
($)	::	∀	(r	::	Rep).	
							∀	(a	::	Type)	
									(b	::	TYPE	r).	
							(a	!	b)	!	a	!	b	
f	$	x	=	f	x



What	can	have	L.P.?
error	::	∀	(r	::	Rep)	
											(a	::	TYPE	r).	
									String	!	a	
error	msg	=	<throw	exception>



What	can	have	L.P.?
class	methods

class	Num	(a	::	TYPE	r)	where	

		(+)	::	a	!	a	!	a	
		(-)	::	a	!	a	!	a	
		(*)	::	a	!	a	!	a	
		...	
		

34	of	76	standard	classes	
can	be	generalized



What	can	have	L.P.?

(!)	::	
		∀	(r1	::	Rep)	(r2	::	Rep).	
		TYPE	r1	!	TYPE	r2	!	Type



Kind-directed	compilation
x	=	f	y

How	does	GHC	compile	
this	function	call?	
Lazily	or	strictly?

It	depends	on	the	kind	
of	the	type	of	y.

The	proof	is	in	the	paper.



Levity	Polymorphism

Lazy	types	are	lifted.	
(They	have	an	extra	element.)

Levity	polymorphism	permits	
polymorphism	over	laziness,	

hence	"liftedness".

Not	liftedness,	but	levity.



With	levity	
polymorphism,	

performant	code	is	
easier	to	write.



Levity	Polymorphism
Richard	A.	Eisenberg	
Bryn	Mawr	College	

rae@cs.brynmawr.edu

Tuesday,	20	June	2017	
PLDI	

Barcelona,	Spain

Simon	Peyton	Jones	
Microsoft	Research	Cambridge	

simonpj@microsoft.com


