
31

A Specification for Dependent Types
in Haskell

STEPHANIE WEIRICH, University of Pennsylvania

ANTOINE VOIZARD, University of Pennsylvania

PEDRO HENRIQUE AZEVEDO DE AMORIM, Ecole Polytechnique and University of Campinas

RICHARD EISENBERG, Bryn Mawr College

We propose a core semantics for Dependent Haskell, an extension of Haskell with full-spectrum dependent

types. Our semantics consists of two related languages. The first is a Curry-style dependently-typed language

with nontermination, irrelevant arguments, and equality abstraction. The second, inspired by the Glasgow

Haskell Compiler’s core language FC, is its explicitly-typed analogue, suitable for implementation in GHC. All

of our results—chiefly, type safety, along with theorems that relate these two languages—have been formalized

using the Coq proof assistant. Because our work is backwards compatible with Haskell, our type safety proof

holds in the presence of nonterminating computation. However, unlike other full-spectrum dependently-typed

languages, such as Coq, Agda or Idris, because of this nontermination, Haskell’s term language does not

correspond to a consistent logic.

CCS Concepts: • Software and its engineering → Functional languages; Polymorphism; • Theory of com-
putation → Type theory;

Additional Key Words and Phrases: Haskell, Dependent Types

ACM Reference format:
Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard Eisenberg. 2017. A

Specification for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, 1, Article 31 (September 2017),

30 pages.

https://doi.org/10.1145/3110275

1 INTRODUCTION
Our goal is to design Dependent Haskell, an extension of the Glasgow Haskell Compiler with full-
spectrum dependent types. The main feature of Dependent Haskell is that it makes no distinction

between types and terms; unlike current Haskell, both compile-time and runtime computation

share the same syntax and semantics.

For example, in current Haskell,
1
length-indexed vectors may be indexed only by type-level

structures. So in the definition below, we say that Vec is a GADT [Cheney and Hinze 2003; Peyton

Jones et al. 2006; Vytiniotis et al. 2011] indexed by the promoted datatype Nat [Yorgey et al. 2012].
2

data Nat :: Type where data Vec :: Type -> Nat -> Type where
O :: Nat Nil :: Vec a O
S :: Nat -> Nat (:>) :: a -> Vec a m -> Vec a (S m)

1
Glasgow Haskell Compiler (GHC), version 8.0.1, with extensions.

2
In this version of GHC, the kind of ordinary types can be written Type as well as *.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/9-ART31

https://doi.org/10.1145/3110275

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

http://icfp17.sigplan.org/track/icfp-2017-Artifacts
http://icfp17.sigplan.org/track/icfp-2017-Artifacts
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275

31:2 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

This distinction between compiletime and runtime computation is both subtle and awkward. For

example, if we want to compute one of these promoted natural numbers to use as the index of

a vector, we must define a type-level function, called a type family in GHC [Chakravarty et al.

2005]. For example, the type family Plus, defined below, may only be applied to promoted natural

numbers.

type One = S O -- type abbreviation

type family Plus (x :: Nat) (y :: Nat) :: Nat where
Plus O y = y
Plus (S x) y = S (Plus x y)

example :: Vec Char (Plus One (Plus One One))
example = 'G' :> 'H' :> 'C' :> Nil

Regular Haskell functions are not applicable to type-level data. As a result, programmers must

duplicate their definitions if they would like them to be available at both compile time and runtime.

However, Dependent Haskell makes no such distinctions. Instead, Vec may be written exactly as

above—but the meaning is that elements of type Nat are just normal values. As a result, we can use

standard Haskell terms, such as one and plus below, directly in types.

one :: Nat plus :: Nat -> Nat -> Nat
one = S O plus O y = y

plus (S x) y = S (plus x y)

example :: Vec Char (one `plus` one `plus` one)
example = 'G' :> 'H' :> 'C' :> Nil

We plan to extend GHC with full-spectrum dependent types in a way that is compatible with the

current implementation, with the goal of simplifying and unifying many of GHC’s extensions.

GHC is a compiler designed for language research. Its front-end elaborates source Haskell

programs to an explicitly typed core language, called FC [Sulzmann et al. 2007]. As a result,

researchers can explore semantic consequences of their designs independent of interactions with

type inference. FC itself is based on an explicitly typed variant of System F [Girard 1971; Reynolds

1974] with type equality coercions. These coercions provide evidence for type equalities, necessary
to support (potentially unbounded) type-level computation [Schrijvers et al. 2008] and GADTs.

Their inclusion means that FC has a decidable, syntax-directed type checking algorithm.

This paper defines the semantics of Dependent Haskell by developing a dependently
typed replacement for FC, called System DC. This version of the core language retains FC’s

explicit coercion proofs but replaces System F with a calculus based on full-spectrum dependent

types. The result is a core language with a rich, decidable type system that can model an extension

of Haskell with dependent types while still supporting existing Haskell programs.

The key idea that makes this work is the observation that we can replace FC in a backwards

compatible way as long as the dependently-typed core language supports irrelevant quantifica-
tion [Barras and Bernardo 2008; Miquel 2001; Pfenning 2001]. Irrelevant quantification marks all

terms (whether they are types or not) as erasable as long as they can be safely removed without

changing the behavior of a program. Haskell is an efficient language because (among many other

optimizations) GHC erases type arguments during compilation. Even though we conflate types and

terms in DC, we must retain the ability to perform this erasure. Therefore, DC disentangles the

notion of “type” from that of “erasable component”.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

A Specification for Dependent Types in Haskell 31:3

Our design of DC is strongly based on two recent dissertations that combine type equality coer-

cions and irrelevant quantification in dependently-typed core calculi [Eisenberg 2016; Gundry 2013]

as well as an extension of FC with kind equalities [Weirich et al. 2013]. Although DC is inspired by

this prior work, we make a number of improvements to these designs (see Section 8.1). The most

important change is that we show that the use of homogeneous equality propositions is com-
patible with explicit coercion proofs. Prior work, inspired by heterogeneous equality [McBride

2000], did not require terms to have related types in an equality proposition. However, by changing

our treatment of equality propositions, we are able to simplify both the language semantics and

the proofs of its metatheoretic properties (see Section 6.2) with no cost to expressiveness.

A second major contribution of our work is that, in parallel with DC, we develop System D,
an implicitly typed version of DC. D is a Curry-style language, similar to implicit System F, in

that it does not support decidable type checking
3
. However, D is otherwise equivalent to DC; any

program in DC can be erased to a well-typed program in D, and for any typing derivation in D,

there exists a well-typed program in DC that erases to it (Section 5).

D has many advantages over explicitly-typed DC.

• First, the design of D exchanges decidable type checking for a simpler specification, as we

show in Sections 3 and 5. This simplicity is due to the fact that D does not need to do as

much bookkeeping as DC; only computationally relevant information appears in D terms. As

a result, the proofs of key metatheoretic properties, such as the consistency of definitional

equality, can be simplified. Furthermore, we can also avoid some complications in reasoning

about DC by appealing to analogous results about D.

• It is also the case that D is more canonical than DC. There are many ways to annotate terms

in support of decidable type checking. There are accordingly many variants of DC that we

can prove equivalent (through erasure) to D. We propose one such variant in this paper

based on what we think will work best in the GHC implementation. However, we discuss

alternatives in Section 6.4.

• Finally, D itself serves as an inspiration for type inference in the source language. Although

type checking is undecidable, it serves as an “ideal” that clever inference algorithms can

approximate. This process has already happened for the System FC-based core language:

some GHC extensions augment Damas-Milner type inference [Damas and Milner 1982] with

features of System F, such as first-class polymorphism [Peyton Jones et al. 2007; Vytiniotis

et al. 2008] and visible type applications [Eisenberg et al. 2016].

Our final contribution is a mechanization of all of the metatheory of this paper using the

Coq proof assistant [Coq development team 2004]. These proofs are available online.
4
This contri-

bution is significant because these proofs require a careful analysis of the allowable interactions

between dependent types, coercion abstraction, nontermination and irrelevance. This combination

is hard to get right and at least two previous efforts have suffered from errors, as we describe in

Section 7.2. Furthermore, some of our own initial designs of the two languages were flawed, in

intricate, hard-to-spot ways. Formalizing all the proofs in Coq provides a level of confidence about

our results that we could not possibly achieve otherwise. Moreover, these results are available for

further extension.

This paper concludes with a discussion that relates our work to the field of research in the design

of dependent type systems (Section 8). In particular, we provide a close comparison of DC to prior

extensions of FC with dependent types [Eisenberg 2016; Gundry 2013; Weirich et al. 2013] and with

3
We use the words type checking and type inference interchangeably—they are equivalent in this setting and both problems

are undecidable [Pfenning 1992; Wells 1999].
4
At https://github.com/sweirich/corespec and in the ACM digital library.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

https://github.com/sweirich/corespec

31:4 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

existing dependently-typed languages. The most significant difference between Dependent Haskell

and many other languages, such as Coq, Agda and Idris, is that the Haskell type system does not

require expressions to terminate. As a result, the Dependent Haskell expressions cannot be used

as proofs of propositions encoded as types; indeed, all types are inhabited (by ⊥) in Haskell. As a

result, the important result for this paper is type soundness [Wright and Felleisen 1994], the fact

that well typed terms do not get stuck. In contrast, terminating dependent type theories support

the property of logical consistency, which shows that the type system includes uninhabited types.

In this paper, our proof of type soundness also requires a property called consistency, but it is not

the same property as logical consistency above. In this paper, consistency means that definitional

equality (in D) and explicit coercion proofs (in DC) cannot equate two types with different head

forms (see Section 4.2).

2 SYSTEM D, SYSTEM DC AND THE DESIGN OF DEPENDENT HASKELL
One purpose of GHC’s explicitly-typed core language is to give a semantics to Haskell programs

in a manner that is independent of type inference. This division is important: it allows language

designers to experiment with various type inference algorithms, while still preserving the semantics

of Haskell programs. It also inspires Haskell source language extensions with features that do not

admit effective type inference, through the use of type annotations.

Below, we give an example that illustrates the key features of DC and D, by showing how

source-level Dependent Haskell expressions can be elaborated into an explicitly typed core. Note

that the DC and D calculi that we define in this paper are designed to investigate the interaction

between dependent types, coercion abstraction, irrelevant arguments and nontermination. The

examples below demonstrate how these features interact in an implementation, like GHC, that

includes primitive datatypes and pattern matching. For simplicity, DC and D do not include these

as primitive, but can encode these examples using standard techniques.
5

Consider the zip function, which combines two equal-length vectors into a vector of pairs, using

the datatypes Nat and Vec from the introduction.

zip :: forall n a b. Vec a n -> Vec b n -> Vec (a,b) n
zip Nil Nil = Nil
zip (x :> xs) (y :> ys) = (x, y) :> zip xs ys

The type of zip is dependent because the first argument (a natural number) appears later in

the type. For efficiency, we also do not want this argument around at runtime, so we mark it as

erasable by using the “forall n” quantifier. Not that this program already compiles with GHC

8.0. However, the meaning of this program is different here—remember that n is an invisible and

irrelevant term argument in Dependent Haskell, not a promoted datatype.

The zip function type checks because in the first branch n is equal to zero, so Nil has a type
equal to Vec a n. In the second branch, when n is equal to S m, then the result of the recursive call

has type Vec a m, so the result type of the branch is Vec a (S m), also equal to Vec a n. This
pattern matching is exhaustive because the two vectors have the same length; the two remaining

patterns are not consistent with the annotated type.

In an explicitly-typed core language, such as DC, we use typing annotations to justify this

reasoning. First, consider the elaborated version of the Vec datatype definition shown below. This

definition explicitly binds the argument m to the (:>) constructor, using forall to note that the

argument need not be stored at runtime. Furthermore, the type of each data constructor includes a

context of equality constraints, describing the information gained during pattern matching.

5
Such as a Scott encoding (see page 504 of Curry et al. [1972]).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

A Specification for Dependent Types in Haskell 31:5

data Vec (a :: Type) (n :: Nat) :: Type where
Nil :: (n ~ 0) => Vec a n
(:>) :: forall (m :: Nat). (n ~ S m) => a -> Vec a m -> Vec a n

The core language version of zip, shown below, uses the binder \- to abstract irrelevant arguments

and the binder /\ to abstract coercions. The core language does not include nested pattern matching,

so the case analysis of each list must be done separately. Each case expression includes two branches,

one for each data constructor (Nil and (:>)). Each branch then quantifies over the arguments to

the matched data constructor, including coercions. For example, (:>) above takes four arguments,

the implicit length m, the coercion (n ~ S m), the head of the vector (of type a) and the tail of the

vector (of type Vec a m).

zip = \-n:Nat. \-a:Type. \-b:Type. \xs:Vec a n. \ys:Vec a n. case xs of
Nil -> /\c1:(n ~ 0). case ys of

Nil -> /\c2:(n ~ 0). Nil [a][n][c1]
(:>) -> \-m:Nat. /\c2:(n ~ S m). \y:b. \ys:Vec b m.

absurd [sym c1; c2]
(:>) -> \m1:Nat. /\c1:(n ~ S m1). \x:a. \xs:Vec a m1. case ys of

Nil -> /\c2:(n ~ 0). absurd [sym c1; c2]
(:>) -> \-m2:Nat. /\c2:(n ~ S m2). \y:b. \ys:Vec b m2.

(:>) [a][n][m1][c1] ((,) [a][b] x y)
(zip [m1][a][b] xs (ys |> Vec b (nth 2 [sym c2; c1]))

The core language zip function must provide all arguments to data constructors and functions,

even those that are inferred in the source language. Arguments that are not relevant to computation

are marked with square brackets. These arguments include the datatype parameters (n and a) as
well as explicit proofs for the equality constraints (c1). The impossible cases in this example are

marked with explicit proofs of contradiction, in this case that (O ~ S m). Finally, in the recursive

call, the type of ys must be coerced from Vec b m2 to Vec b m1 using an explicit proof that these

two types are equal.

Although the explicit arguments and coercions simplify type checking, they obscure the meaning

of terms like zip. Furthermore, there are many possible ways of annotating programs in support

of decidable type checking—it would be good to know that choices made in these annotations do

not matter. For example, the Nil [a][n][c1] case above could be replaced with Nil [a][n][c2]
instead, because both c1 and c2 are proofs of the same equality. Making this change should not

affect the definition of zip.
In fact, the same program in D includes no annotations.

zip = \-n. \-a. \-b. \xs. \ys. case xs of
Nil -> /\c1. case ys of

Nil -> /\c2. Nil [][][]
(:>) -> \-m. /\c2. \y. \ys. absurd []

(:>) -> \m1. /\c1. \x. \xs. case ys of
Nil -> /\c2. absurd []
(:>) -> \-m2. /\c2. \y. \ys.

(:>) [][][][] ((,) [][] x y) (zip [][][] xs ys)

Besides being more similar to the source, this version captures exactly what this code does at

runtime. It also justifies equating the two differently annotated versions. If two DC programs erase

to the same D term, we know that the annotations chosen by the type inferencer do not affect the

runtime behavior of the program.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:6 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

D DC

Typing Γ ⊨ a : A Γ ⊢ a : A
Proposition well-formedness Γ ⊨ ϕ ok Γ ⊢ ϕ ok
Definitional equality (terms) Γ;∆ ⊨ a ≡ b : A Γ;∆ ⊢ γ : a ∼ b
Definitional equality (props) Γ;∆ ⊨ ϕ1 ≡ ϕ2 Γ;∆ ⊢ γ : ϕ1 ∼ ϕ2

Context well-formedness ⊨ Γ ⊢ Γ
Signature well-formedness ⊨ Σ ⊢ Σ

Primitive reduction ⊨ a > b
One-step reduction ⊨ a { b Γ ⊢ a { b

Fig. 1. Summary of judgment forms

terms, types a,b,A,B ::= ⋆ | x | F | λρx .a | a bρ | □
| Π

ρx :A→ B | Λc.a | a[•] | ∀c :ϕ .A
propositions ϕ ::= a ∼A b
relevance ρ ::= + | −

values v ::= λ+x .a | λ−x .v | Λc.a | ⋆ | Πρx :A→ B | ∀c :ϕ .A

contexts Γ ::= ∅ | Γ, x : A | Γ, c : ϕ
available set ∆ ::= ∅ | ∆, c
signature Σ ::= ∅ | Σ ∪ {F ∼ a : A}

Fig. 2. Syntax of D

3 SYSTEM D: A LANGUAGEWITH IMPLICIT EQUALITY PROOFS
We now make the two languages of this paper precise. These languages share parallel structure in

their definitions. This is no coincidence. The annotated language DC is, in some sense, a reification of
the derivations of D. To emphasize this connection, we reuse the same metavariables for analogous

syntax in both languages.
6
The judgment forms are summarized in Figure 1.

The syntax of D, the implicit language, is shown in Figure 2. This language, inspired by pure

type systems [Barendregt 1991], uses a shared syntax for terms and types. The language includes

• a single sort (⋆) for classifying types,
• functions (λ+x .a) with dependent types (Π

+x :A→ B), and their associated application form

(a b+),
• functions with irrelevant arguments (λ−x .a), their types (Π−x :A → B), and instantiation

form (a □−),
• coercion abstractions (Λc.a), their types (∀c :ϕ .A), and instantiation form (a[•]),

• and top-level recursive definitions (F).
In this syntax, x can be used for both term and type variables. These variables are bound in

the bodies of functions and their types. Similarly, coercion variables, c, are bound in the bodies of

coercion abstractions and their types. (Technically, irrelevant variables and coercion variables are

prevented by the typing rules from actually appearing in the bodies of their respective abstractions.)

6
In fact, our Coq development uses the same syntax for both languages and relies on the judgment forms to identify the

pertinent set of constructs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

A Specification for Dependent Types in Haskell 31:7

We use the same syntax for relevant and irrelevant functions, marking which one we mean with a

relevance annotation ρ. We sometimes omit relevance annotations ρ from applications a bρ when

they are clear from context. We also write nondependent relevant function types Π
+x :A→ B as

A → B, when x does not appear free in B, and write nondependent coercion abstraction types

∀c :ϕ .A as ϕ ⇒ A, when c does not appear free in A.

3.1 Evaluation
The call-by-name small-step evaluation rules for D are shown below. The first three rules are

primitive reductions—if a term steps using one of these first three rules only, then we use the

notation ⊨ a > b. The primitive reductions include call-by-name β-reduction of abstractions,

β-reduction of coercion abstractions, and unfolding of top-level definitions.

E-AppAbs

⊨ (λρx .v) aρ { v{a/x}

E-CAppCAbs

⊨ (Λc.b)[•] { b{•/c}

E-Axiom

F ∼ a : A ∈ Σ0

⊨ F { a

E-AbsTerm

⊨ a { a′

⊨ λ−x .a { λ−x .a′

E-AppLeft

⊨ a { a′

⊨ a bρ { a′ bρ

E-CAppLeft

⊨ a { a′

⊨ a[•] { a′[•]

The second three rules extend primitive reduction into a deterministic reduction relation called

one-step reduction and written ⊨ a { b. When iterated, this relation models the operational

semantics of Haskell by reducing expressions to their weak-head form.

The only unusual rule of this relation is rule E-AbsTerm, which allows reduction to continue

underneath an irrelevant abstraction. (Analogously, an implicit abstraction is a value only when

its body is also a value.) This rule means that D models the behavior of source Haskell when it

comes to polymorphism—type generalization via implicit abstraction does not delay computation.

This rule compensates for the fact that we do not erase implicit generalizations and instantiations

completely in D; although the arguments are not present, the locations are still marked in the term.

We choose this design to simplify the metatheory of D, as we discuss further in Section 6.3.

3.2 Typing
The typing rules, shown in Figure 3, are based on a dependent type theory with ⋆ : ⋆, as shown
in the first rule (rule E-Star). Although this rule is known to violate logical consistency, it is

not problematic in this context; Haskell is already logically inconsistent. Therefore, we avoid the

complexity that comes with the stratified universe hierarchy needed to ensure termination in many

dependently-typed languages.

The next five rules describe relevant and irrelevant abstractions. D includes irrelevant abstractions

to support parametric polymorphism—irrelevant arguments are not present in terms though they

may appear in an abstraction’s (dependent) type. Abstractions (and their types) are marked by a

relevance flag, ρ, indicating whether the type-or-term argument may be used in the body of the

abstraction (+) or must be parametric (−). This usage is checked in rule E-Abs by the disjunction

(ρ = +) ∨ (x < fv a). This approach to irrelevant abstractions is directly inspired by ICC [Miquel

2001]. Irrelevant applications mark missing arguments with □. This is the only place where the

typing rules allow the □ term.

The next rule, rule E-Conv, is conversion. This type system assigns types up to definitional

equality, defined by the judgment Γ;∆ ⊨ a ≡ b : A shown in Figure 4. This judgment is indexed

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:8 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

Γ ⊨ a : A

E-Star

⊨ Γ

Γ ⊨ ⋆ : ⋆

E-Var

⊨ Γ x : A ∈ Γ

Γ ⊨ x : A

E-Pi

Γ, x : A ⊨ B : ⋆

Γ ⊨ Π
ρx :A→ B : ⋆

E-Abs

Γ, x : A ⊨ a : B
(ρ = +) ∨ (x < fv a)

Γ ⊨ λρx .a : Π
ρx :A→ B

E-App

Γ ⊨ b : Π
+x :A→ B

Γ ⊨ a : A

Γ ⊨ b a+ : B{a/x}

E-IApp

Γ ⊨ b : Π
−x :A→ B

Γ ⊨ a : A

Γ ⊨ b □− : B{a/x}

E-Conv

Γ ⊨ a : A
Γ; Γ̃ ⊨ A ≡ B : ⋆

Γ ⊨ a : B

E-Fam

⊨ Γ
F ∼ a : A ∈ Σ0

Γ ⊨ F : A

E-CPi

Γ, c : ϕ ⊨ B : ⋆

Γ ⊨ ∀c :ϕ .B : ⋆

E-CAbs

Γ, c : ϕ ⊨ a : B

Γ ⊨ Λc.a : ∀c :ϕ .B

E-CApp

Γ ⊨ a1 : ∀c : (a ∼A b).B1 Γ; Γ̃ ⊨ a ≡ b : A

Γ ⊨ a1[•] : B1{•/c}

Γ ⊨ ϕ ok ⊨ Σ

E-Wff

Γ ⊨ a : A Γ ⊨ b : A

Γ ⊨ a ∼A b ok

Sig-Empty

⊨ ∅

Sig-ConsAx

⊨ Σ ∅ ⊨ A : ⋆ ∅ ⊨ a : A F < dom Σ

⊨ Σ ∪ {F ∼ a : A}

⊨ Γ

E-Empty

⊨ ∅

E-ConsTm

⊨ Γ Γ ⊨ A : ⋆ x < dom Γ

⊨ Γ, x : A

E-ConsCo

⊨ Γ Γ ⊨ ϕ ok c < dom Γ

⊨ Γ, c : ϕ

Fig. 3. D Type system

by ∆, a set of available variables. For technical reasons that we return to in Section 4.2, we must

restrict the coercion assumptions that are available in proofs of definitional equality to those in this

set. When definitional equality is used in the typing judgment, as it is in rule E-Conv, all in-scope

coercion variables are available. Therefore, the ∆ in this premise is marked by the notation Γ̃, which
refers to the set of all coercion variables in the domain of Γ.

The next rule, rule E-Fam, checks the occurrence of identifiers F with recursive definitions. These
definitions are specified by some toplevel signature Σ0. Our proofs about System D do not depend

on the actual contents of this signature as long as it is well-formed according to the rules of ⊨ Σ
judgement.

For concreteness, our Coq development defines Σ0 to be a signature containing only a standard,

polymorphic recursive fixpoint operator Fix. Because D is a full-spectrum language, Fix can be

used to define recursive functions and recursive datatypes. We have shown that this signature is

well-formed.

Lemma 3.1 (Fix well-formed
7
).

⊨ Fix ∼ λ−x .λ+y.(y (Fix□y)) : Π
−x :⋆→ (x → x) → x

7
fix_typing.v:FixDef_FixTy

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

fix_typing.v: FixDef_FixTy

A Specification for Dependent Types in Haskell 31:9

However, because our Coq development treats the definition of Σ0 opaquely, alternative defini-

tions for Σ0 can be supplied, as long as they are well-formed. For example, recursive definitions

could be defined directly as part of this top-level signature. Furthermore, because there is no

inherent ordering on signatures, these recursive definitions may be mutually defined and may be

inductive-recursive [Dybjer and Setzer 1999].

To support GADTs this language includes coercion abstractions, written Λc.a. This term provides

the ability for an expression a to be parameterized over an equality assumption c, which is evidence

proving an equality proposition ϕ. The assumed equality is stored in the context during type

checking and can be used by definitional equality. In D, coercion assumptions are discharged in

rule E-CApp by •, a trivial proof that marks the provability of an assumed equality.

Propositions ϕ, written a ∼A b, are statements of equality between terms/types. The two terms a
and b must have the same type A for this statement to be well-formed, as shown in rule E-Wff.

In other words, equality propositions are homogeneous. We cannot talk about equality between

terms unless we know that their types are equal.

Finally, the last three rules in Figure 3 define when type contexts are well-formed. All typing

derivations Γ ⊨ a : A ensure that both ⊨ Γ and Γ ⊨ A : ⋆. The typing rules check contexts at

the leaves of the derivation (as in rules E-Star, E-Var, and E-Fam). This means that types and

propositions do not need to be checked when they are added to the context (as in in rules E-Pi,

E-Abs, E-CPi, and E-CAbs).

3.3 Definitional Equality
The most delicate part in the design of a dependently-typed language is the definition of the equality

used in the conversion rule. This relation, Γ;∆ ⊨ a ≡ b : A defines when two terms a and b are

indistinguishable. The rules in Figure 4 define this relation for D.

As in most dependently-typed languages, this definition of equality is an equivalence relation

(see the first three rules of the figure) and a congruence relation (see all rules ending with Cong).

Similarly, equality contains the reduction relation (rule E-Beta). Because evaluation may not

terminate, this definition of equality is not a decidable relation.

Furthermore, this relation is (homogeneously) typed—two terms a and b are related at a particular
type A (and at all types equal to A, via rule E-EqConv). In other words, this system has the following

property:

Lemma 3.2 (DefEq regularity
8
). If Γ;∆ ⊨ a ≡ b : A then Γ ⊨ a : A and Γ ⊨ b : A.

So far, these rules are similar to most judgmental treatments of definitional equality in intensional

type theory, such as that shown in Aspinall and Hoffman [2005]. However, this definition differs

from that used in most other dependently-typed languages through the inclusion of the rule E-Assn.

This rule says that assumed propositions can be used directly, as long as they are in the available

set.

The assumption rule strengthens this definition of equality considerably compared to intensional

type theory. Indeed, it reflects the equality propositions into the definitional equality, as in exten-

sional type theory [Martin-Löf 1984]. However, D should not be considered an extensional type

theory because our equality propositions are not the same as “propositional equality” found in

other type theories—equality propositions are kept separate from types. Coercion abstraction is not

the same as normal abstraction, and can only be justified by equality derivations, not by arbitrary

terms. Because we cannot use a term to justify an assumed equality, this language remains type

sound in the presence of nontermination.

8
ext_invert.v:DefEq_regularity

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

ext_invert.v:DefEq_regularity

31:10 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

Γ;∆ ⊨ a ≡ b : A (Definitional equality)
E-Beta

Γ ⊨ a1 : B
⊨ a1 > a2

Γ;∆ ⊨ a1 ≡ a2 : B

E-Refl

Γ ⊨ a : A

Γ;∆ ⊨ a ≡ a : A

E-Sym

Γ;∆ ⊨ b ≡ a : A

Γ;∆ ⊨ a ≡ b : A

E-Trans

Γ;∆ ⊨ a ≡ a1 : A
Γ;∆ ⊨ a1 ≡ b : A

Γ;∆ ⊨ a ≡ b : A

E-PiCong

Γ;∆ ⊨ A1 ≡ A2 : ⋆
Γ, x : A1;∆ ⊨ B1 ≡ B2 : ⋆

Γ;∆ ⊨ (Πρx :A1 → B1) ≡ (Πρx :A2 → B2) : ⋆

E-AbsCong

Γ, x : A1;∆ ⊨ b1 ≡ b2 : B
(ρ = +) ∨ (x < fv b1)

(ρ = +) ∨ (x < fv b2)

Γ;∆ ⊨ (λρx .b1) ≡ (λρx .b2) : Π
ρx :A1 → B

E-AppCong

Γ;∆ ⊨ a1 ≡ b1 : Π
+x :A→ B

Γ;∆ ⊨ a2 ≡ b2 : A

Γ;∆ ⊨ a1 a2

+ ≡ b1 b2

+
: B{a2/x}

E-IAppCong

Γ;∆ ⊨ a1 ≡ b1 : Π
−x :A→ B

Γ ⊨ a : A

Γ;∆ ⊨ a1 □
− ≡ b1 □

−
: B{a/x}

E-CPiCong

Γ;∆ ⊨ ϕ1 ≡ ϕ2

Γ, c : ϕ1;∆ ⊨ A ≡ B : ⋆

Γ;∆ ⊨ ∀c :ϕ1.A ≡ ∀c :ϕ2.B : ⋆

E-CAbsCong

Γ, c : ϕ1;∆ ⊨ a ≡ b : B

Γ;∆ ⊨ (Λc.a) ≡ (Λc.b) : ∀c :ϕ1.B

E-CAppCong

Γ;∆ ⊨ a1 ≡ b1 : ∀c : (a ∼A b).B
Γ; Γ̃ ⊨ a ≡ b : A

Γ;∆ ⊨ a1[•] ≡ b1[•] : B{•/c}

E-Assn

⊨ Γ
c : (a ∼A b) ∈ Γ c ∈ ∆

Γ;∆ ⊨ a ≡ b : A

E-PiFst

Γ;∆ ⊨ Π
ρx :A1 → B1 ≡ Π

ρx :A2 → B2 : ⋆

Γ;∆ ⊨ A1 ≡ A2 : ⋆

E-PiSnd

Γ;∆ ⊨ Π
ρx :A1 → B1 ≡ Π

ρx :A2 → B2 : ⋆
Γ;∆ ⊨ a1 ≡ a2 : A1

Γ;∆ ⊨ B1{a1/x} ≡ B2{a2/x} : ⋆

E-CPiSnd

Γ;∆ ⊨ ∀c : (a1 ∼A a2).B1 ≡ ∀c : (a′
1
∼A′ a′2).B2 : ⋆

Γ; Γ̃ ⊨ a1 ≡ a2 : A
Γ; Γ̃ ⊨ a′

1
≡ a′

2
: A′

Γ;∆ ⊨ B1{•/c} ≡ B2{•/c} : ⋆

E-IsoSnd

Γ;∆ ⊨ a ∼A b ≡ a′ ∼A′ b′

Γ;∆ ⊨ A ≡ A′ : ⋆

E-Cast

Γ;∆ ⊨ a ≡ b : A
Γ;∆ ⊨ a ∼A b ≡ a′ ∼A′ b′

Γ;∆ ⊨ a′ ≡ b′ : A′

E-EqConv

Γ;∆ ⊨ a ≡ b : A Γ; Γ̃ ⊨ A ≡ B : ⋆

Γ;∆ ⊨ a ≡ b : B

Fig. 4. Definitional equality for implicit language

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

A Specification for Dependent Types in Haskell 31:11

Γ;∆ ⊨ ϕ1 ≡ ϕ2 (Definitional prop equality)

E-PropCong

Γ;∆ ⊨ A1 ≡ A2 : A
Γ;∆ ⊨ B1 ≡ B2 : A

Γ;∆ ⊨ A1 ∼A B1 ≡ A2 ∼A B2

E-IsoConv

Γ;∆ ⊨ A ≡ B : ⋆
Γ ⊨ A1 ∼A A2 ok
Γ ⊨ A1 ∼B A2 ok

Γ;∆ ⊨ A1 ∼A A2 ≡ A1 ∼B A2

E-CPiFst

Γ;∆ ⊨ ∀c :ϕ1.B1 ≡ ∀c :ϕ2.B2 : ⋆

Γ;∆ ⊨ ϕ1 ≡ ϕ2

Fig. 5. Definitional prop equality

3.4 Equality Propositions Are Not Types
Our languages firmly distinguish between types (which are all inhabited by terms) and equality

propositions (which may or may not be provable using the rules in Figure 4). Propositions are

checked for well-formedness with the judgment Γ ⊨ ϕ ok (Figure 3). However, because propositions
appear in types, we also need to define when two propositions are equal. We do so with the judgment

Γ;∆ ⊨ ϕ1 ≡ ϕ2 (Figure 5) and call this relation prop equality.
We use prop equality in two places in the definition of term/type equality. Prop equality is

necessary in the congruence rule for coercion types (rule E-CPiCong). It also may be used to

change the conclusion of the definitional equality judgment to an equivalent equality proposition

(rule E-Cast).

Two propositions are equal when their corresponding terms are equal at the same type (rule E-

PropCong) or when their corresponding types are equal with the same terms (rule E-IsoConv).

Furthermore, if two coercion abstraction types are equivalent then the injectivity of these types

means that we can extract an equivalence of the propositions (rule E-CPiFst). Although the type

system does not explicitly include rules for reflexivity, symmetry and transitivity, these operations

are derivable from the analogous rules for definitional equality and rule E-CPiFst.
9

One difference between term/type and prop equality is that type forms are injective everywhere

(see rules E-PiFst and E-CPiFst for example) but the constructor ∼ is injective in only the types

of the equated terms, not in the two terms themselves. For example, if we have a prop equality

a1 ∼A a2 ≡ b1 ∼B b2, we can derive A ≡ B : ⋆, using rule E-EqConv, but we cannot derive

a1 ≡ b1 : A or a2 ≡ b2 : A.
Prior work includes this sort of injectivity by default, but we separate prop equality from type

equality specifically so that we can leave this injectivity out of the language definition. The reason

for this omission is twofold. First, unlike rule E-PiFst, this injectivity is not forced by the rest of the

system. In contrast, the preservation theorem requires rule E-PiFst, as we describe below. Second,

this omission leaves the system open for a more extensional definition of prop equality, which we

hope to explore in future work (see Section 9).

4 TYPE SOUNDNESS FOR SYSTEM D
The previous section completely specifies the operational and static semantics of the D language.

Next, we turn to its metatheoretic properties. In this section, we show that the language is type

9
ext_invert.v:refl_iso,sym_iso,trans_iso

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

ext_invert.v:refl_iso,sym_iso,trans_iso

31:12 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

sound by proving the usual preservation and progress lemmas. Note that although we are working

with a dependent type system, the structure of the proof below directly follows related results

about FC [Breitner et al. 2014; Weirich et al. 2013]. In particular, because this language (like Fω)
has a nontrivial definitional equality, we must show that this equality is consistent before proving

the progress lemma. We view the fact that current proof techniques extend to this full spectrum

language as a positive feature of this design—the adoption of dependent types has not forced us to

abandon existing methods for reasoning about the language. The contributions of this paper are in

the design of the system itself, not in the structure of its proof of type soundness. Therefore, we do

not describe this proof in great detail below.

4.1 Preservation
We have defined two different reduction relations for the implicit language: primitive reduction

and one-step reduction. The preservation theorm holds for both of these reduction relations.

Theorem 4.1 (Preservation (primitive)
10
). If Γ ⊨ a : A and ⊨ a > a′ then Γ ⊨ a′ : A.

Theorem 4.2 (Preservation (one-step)
11
). If Γ ⊨ a : A and ⊨ a { a′ then Γ ⊨ a′ : A.

The proofs of these theorems are straightforward, but require several inversion lemmas for the

typing relation. Because of conversion (rule E-Conv), inversion of the typing judgment produces

types that are definitionally equal but not syntactically equal to the given type of a term. For

example, the inversion rule for term abstractions reads

Lemma 4.3 (Inversion for abstraction
12
). If Γ ⊨ λρx : A0.b0 : A then there exists some A1

and B1 such that Γ; Γ̃ ⊨ A ≡ Π
ρx :A1 → B1 : ⋆ and Γ, x : A1 ⊢ b0 : B1 and Γ, x : A1 ⊢ B1 : ⋆ and

Γ ⊢ A1 : ⋆.

As a result of this inversion lemma, the case for rule E-AppAbs in the preservation proof requires

injectivity for function types (rules E-PiFst and E-PiSnd) in definitional equality. Similarly, rule E-

CBeta requires rules E-CPiFst and E-CPiSnd. These injectivity properties are admissible from the

other rules of the type system in an empty context. However, because we would like preservation

to hold even when coercion assumptions are available, we add these injectivity rules to the type

system.

4.2 Progress and Consistency
An important step for the proof of the progress lemma is to show the consistency of definitional

equality. Consistency means that in certain contexts, the system cannot derive an equality between

types that have different head forms. We write “consistentAB” when A and B are consistent—i.e.

when it is not the case that they are types with conflicting heads.

We show consistency in two steps, using the auxiliary relations parallel reduction and joinability.
Our consistency proof thus first shows that that definitionally equal types are joinable and then

that joinable types are consistent.

Two types are joinable when they reduce to some common term using any number of steps of

parallel reduction. Parallel reduction, written ⊨ a ⇒ b, is not part of the specification of D. For

reasons of space, this relation does not appear in this work.

Definition 4.4 (Joinable
13
). Two types are joinable, written ⊢ a1 ⇔ a2, when there exists some b

such that ⊢ a1 ⇒
∗ b and ⊢ a2 ⇒

∗ b.

10
ext_red.v:Beta_preservation

11
ext_red.v:reduction_preservation

12
ext_invert.v:invert_a_Pi

13
ett.ott:join

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

ext_red.v:Beta_preservation
ext_red.v:reduction_preservation
ext_invert.v:invert_a_Pi
ett.ott:join

A Specification for Dependent Types in Haskell 31:13

Only some definitionally equal types are joinable. Because parallel reduction ignores assumed

equality propositions, the next result holds only for equality derivations with no available coercion

assumptions.

Theorem 4.5 (Eqality implies Joinability
14
). If Γ;∅ ⊨ a ≡ b : A then ⊢ a⇔ b

This restriction in the lemma is necessary because the type system does not rule out clearly

bogus assumptions, such as Int ∼⋆ Bool. As a result, we cannot prove that only consistent types

are definitionally equal in a context that makes such an assumption available.

For the second part (joinability implies consistency), we observe that head forms are preserved

by parallel reduction. This fact holds because parallel reduction is (strongly) confluent.

Theorem 4.6 (Confluence
15
). If ⊨ a⇒ a1 and ⊨ a⇒ a2 then there exists b, such that ⊨ a1 ⇒ b

and ⊨ a2 ⇒ b.

Theorem 4.7 (Joinability implies consistency
16
). If ⊢ A⇔ B then consistentAB.

Corollary 4.8 (Consistency for D). If Γ;∅ ⊨ a ≡ b : A then consistentAB.

A consequence of our joinability-based proof of consistency is that there are some equalities

that may be safe but we cannot allow the type system to derive. For example, we cannot allow the

congruence rule for coercion abstraction types (rule E-CPiCong) to derive this equality.

∅;∅ ⊨ ∀c : (Int ∼⋆ Bool).Int ≡ ∀c : (Int ∼⋆ Bool).Bool : ⋆

The problem is that we don’t know how to show that this equality is consistent—these two terms

are not joinable.

We prevent rule E-CPiCong from deriving this equality by not adding the assumption c to the

available set ∆ when showing the equality for Int and Bool. The rest of the rules preserve this
restriction in the parts of the derivation that are necessary to show terms equivalent. Note that

we can sometimes weaken the restriction in derivations: For example in rule E-CAppCong, the

premise that shows a ≡ b is to make sure that the terms a1[•] and b1[•] type check. It is not part of

the equality proof, so we can use the full context at that point.

One may worry that with this restriction, our definitional equality might not admit the sub-

stitutivity property stated below.
17
This lemma states that in any context (i.e. a term with a free

variable) we can lift an equality through that context.

Lemma 4.9 (Substitutivity
18
). If Γ1, x : A, Γ2 ⊨ b : B and Γ1;∆ ⊨ a1 ≡ a2 : A then

Γ1, (Γ2{a1/x});∆ ⊨ b{a1/x} ≡ b{a2/x} : B{a1/x}.

Eisenberg [2016] could not prove this property about his language because his treatment of

coercion variables in the rule was too restrictive. However, this result is provable in our system

because our restriction via available sets precisely characterizes what it means to “use” a coercion

variable.

The consistency result allows us to prove the progress lemma for D. This progress lemma is

stated with respect to the one-step reduction relation and the definition of value given in Figure 2.

Lemma 4.10 (Progress
19
). If Γ ⊨ a : A, Γ contains no coercion assumptions, and no term variable x

in the domain of Γ occurs free in a, then either a is a value or there exists some a′ such that ⊨ a { a′.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:14 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

terms, types a,b,A,B ::= ⋆ | x | F | λρx :A.b | a bρ | Πρx :A→ B
| Λc :ϕ .a | a[γ] | ∀c :ϕ .A | a ▷ γ

coercions (excerpt) γ ::= c | refl a | symγ | γ1;γ2 | red a b | Πρx :γ1.γ2 | . . .

Fig. 6. Syntax of DC, the explicit language

5 SYSTEM DC: AN EXPLICITLY-TYPED LANGUAGE
We now turn to the explicit language, DC, which adds syntactic forms for type annotations and

explicit coercions to make type checking unique and decidable. The syntax of DC is shown in

Figure 6. The syntactic form a ▷ γ marks type coercions with explicit proofs γ . Furthermore, the

syntax also includes the types of variables in term and coercion abstractions (λx :A.a and Λc :ϕ .a).
To require explicit terms in instantiations, the term (□) and the trivial coercion (•) are missing from

this syntax.

The main judgment forms of this language correspond exactly to the implicit language judgments,

as shown in Figure 1.

We can connect DC terms to D terms through an erasure operation, written |a |, that translates
annotated terms to their implicit counterparts. This definition is a structural recursion over the

syntax, removing irrelevant information.

Definition 5.1 (Annotation erasure
20
).

| ⋆ | = ⋆
|x | = x
|F | = F
|λρx :A.a| = λρx .|a|
|a b+ | = |a| |b|+

|a b− | = |a| □−

|Πρx :A→ B| = Π
ρx : |A| → |B|

|Λc :ϕ .a| = Λc.|a|
|a[γ]| = |a|[•]
|∀c :a0 ∼A a1.b| = ∀c : |a0 | ∼ |A | |a1 |.|b|
|a ▷ γ | = a

We start our discussion by summarizing the properties that guide the design of DC and its

connection to D. For brevity, we state these properties only about the typing judgment below, but

analogues hold for the first six judgment forms shown in Figure 1.

First, typing is decidable in DC, and annotations nail down all sources of ambiguity in the typing

relation, making type checking fully syntax directed.

Lemma 5.2 (Decidable typing
21
). Given Γ and a, it is decidable whether there exists some A such

that Γ ⊢ a : A.

Lemma 5.3 (Uniqeness of typing
22
). If Γ ⊢ a : A1 and Γ ⊢ a : A2 then A1 = A2.

Next, the two languages are strongly related via this erasure operation, in the following way. We

can always erase DC typing derivations to produce D derivations. Furthermore, given D derivations

we can always produce annotated terms and derivations in DC that erase to them.

Lemma 5.4 (Erasure
23
). If Γ ⊢ a : A then |Γ | ⊨ |a| : |A|.

Lemma 5.5 (Annotation
24
). If Γ ⊨ a : A then, for all Γ0 such that |Γ0 | = Γ, there exists some a0

and A0, such that Γ0 ⊢ a0 : A0 where |a0 | = a and |A0 | = A.
14

ext_consist.v:consistent_defeq
15

ext_consist.v:confluence
16

ext_consist.v:join_consistent
17

This lemma

is called the “lifting lemma” in prior work [Sulzmann et al. 2007; Weirich et al. 2013].
18

congruence.v:congruence

19
ext_consist.v:progress

20
ett.ott:erase

21
fc_dec.v:FC_typechecking_decidable

22
fc_unique.v:typing_unique

23
erase.v:typing_erase

24
erase.v:annotation_mutual

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

ext_consist.v:consistent_defeq
ext_consist.v: confluence
ext_consist.v:join_consistent
congruence.v: congruence
ext_consist.v: progress
ett.ott:erase
fc_dec.v:FC_typechecking_decidable
fc_unique.v: typing_unique
erase.v: typing_erase
erase.v:annotation_mutual

A Specification for Dependent Types in Haskell 31:15

Γ ⊢ a : A (Typing)
An-Star

⊢ Γ

Γ ⊢ ⋆ : ⋆

An-Var

⊢ Γ x : A ∈ Γ

Γ ⊢ x : A

An-Pi

Γ, x : A ⊢ B : ⋆

Γ ⊢ Π
ρx :A→ B : ⋆

An-Abs

Γ, x : A ⊢ a : B (ρ = +) ∨ (x < fv |a|)

Γ ⊢ λρx :A.a : Π
ρx :A→ B

An-App

Γ ⊢ b : Π
ρx :A→ B

Γ ⊢ a : A

Γ ⊢ b aρ : B{a/x}

An-Conv

Γ ⊢ a : A
Γ; Γ̃ ⊢ γ : A ∼ B

Γ ⊢ B : ⋆

Γ ⊢ a ▷ γ : B

An-Fam

⊢ Γ
F ∼ a : A ∈ Σ1

Γ ⊢ F : A

An-CPi

Γ, c : ϕ ⊢ B : ⋆

Γ ⊢ ∀c :ϕ .B : ⋆

An-CAbs

Γ, c : ϕ ⊢ a : B

Γ ⊢ Λc :ϕ .a : ∀c :ϕ .B

An-CApp

Γ ⊢ a1 : ∀c :a ∼A1
b.B Γ; Γ̃ ⊢ γ : a ∼ b

Γ ⊢ a1[γ] : B{γ/c}

Fig. 7. Typing rules for DC

5.1 The Design of DC
Designing a language that has decidable type checking, unique types, and corresponds exactly to

D requires the addition of a number of annotations to the syntax of D, reifying the information

contained in the typing derivation. In this section, we discuss some of the constraints on our designs

and their effects on the rules for typing terms (Figure 7) and checking coercion proofs (Figures 8

and 9). Overall, the typing rules for DC are no more complex than their D counterparts. However,

the rules for coercions require much more bookkeeping in DC than the corresponding rules in D.

For example, compare rule E-CAbsCong with rule An-CAbsCong.

The most important change for the explicit language is the addition of explicit coercion proof

terms for type conversion in ruleAn-Conv. Because the definitional equality relation is undecidable,

we cannot ask the type checker to determine whether two types are equal in a conversion. Instead,

this language includes an explicit proof γ of the equality that the DC type checker is only required

to verify. We describe this judgment in the next subsection.

Other rules of the type system also add annotations to make type checking syntax directed. For

example, consider the typing rules for abstractions (rule An-Abs) and applications (rule An-App).

We have two new annotations in these two rules. Abstractions include the types of bound variables

and irrelevant applications use their actual arguments instead of using □. As a positive result of
this change, we now need only one rule for typing applications. Furthermore, because terms now

include irrelevant variables in annotations, irrelevant abstractions check relevance against the

body after erasure, following ICC* [Barras and Bernardo 2008]. Similarly, coercion abstraction

(rule An-CAbs) and instantiation (rule An-CApp) require annotations for the abstracted proposition

and the evidence that it is satisfied. All other rules of the typing judgment are the same as D.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:16 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

Γ;∆ ⊢ γ : a ∼ b (Type equality)

An-Refl

Γ ⊢ a : A

Γ;∆ ⊢ refl a : a ∼ a

An-Sym

Γ ⊢ b : B Γ ⊢ a : A
Γ;∆ ⊢ γ : b ∼ a

Γ;∆ ⊢ symγ : a ∼ b

An-Trans

Γ;∆ ⊢ γ1 : a ∼ a1

Γ;∆ ⊢ γ2 : a1 ∼ b

Γ;∆ ⊢ (γ1;γ2) : a ∼ b

An-PiCong

Γ;∆ ⊢ γ1 : A1 ∼ A2 Γ, x : A1;∆ ⊢ γ2 : B1 ∼ B2 B3 = B2{x ▷ symγ1/x}
Γ ⊢ Π

ρx :A1 → B1 : ⋆ Γ ⊢ Π
ρx :A1 → B2 : ⋆ Γ ⊢ Π

ρx :A2 → B3 : ⋆

Γ;∆ ⊢ (Πρx :γ1.γ2) : (Πρx :A1 → B1) ∼ (Πρx :A2 → B3)

An-AbsCong

Γ;∆ ⊢ γ1 : A1 ∼ A2 Γ, x : A1;∆ ⊢ γ2 : b1 ∼ b2 b3 = b2{x ▷ symγ1/x}
Γ ⊢ A2 : ⋆ (ρ = +) ∨ (x < fv |b1 |) (ρ = +) ∨ (x < fv |b3 |)

Γ;∆ ⊢ (λρx :γ1.γ2) : (λρx :A1.b1) ∼ (λρx :A2.b3)

An-AppCong

Γ;∆ ⊢ γ1 : a1 ∼ b1 Γ;∆ ⊢ γ2 : a2 ∼ b2 Γ ⊢ a1 a2

ρ
: A Γ ⊢ b1 b2

ρ
: B

Γ;∆ ⊢ (γ1 γ
ρ
2
) : (a1 a2

ρ) ∼ (b1 b2

ρ)

An-CPiCong

Γ;∆ ⊢ γ1 : ϕ1 ∼ ϕ2 Γ, c : ϕ1;∆ ⊢ γ3 : B1 ∼ B2

B3 = B2{c ▷ symγ1/c} Γ ⊢ ∀c :ϕ1.B1 : ⋆ Γ ⊢ ∀c :ϕ1.B2 : ⋆

Γ;∆ ⊢ (∀c :γ1.γ3) : (∀c :ϕ1.B1) ∼ (∀c :ϕ2.B3)

An-CAbsCong

Γ;∆ ⊢ γ1 : ϕ1 ∼ ϕ2

Γ, c : ϕ1;∆ ⊢ γ3 : a1 ∼ a2 a3 = a2{c ▷ symγ1/c} Γ ⊢ (Λc :ϕ1.a1) : ∀c :ϕ1.B1

Γ ⊢ (Λc :ϕ1.a2) : B Γ ⊢ (Λc :ϕ2.a3) : ∀c :ϕ2.B2 Γ; Γ̃ ⊢ γ4 : ∀c :ϕ1.B1 ∼ ∀c :ϕ2.B2

Γ;∆ ⊢ (λc :γ1.γ3@γ4) : (Λc :ϕ1.a1) ∼ (Λc :ϕ2.a3)

An-CAppCong

Γ;∆ ⊢ γ1 : a1 ∼ b1

Γ; Γ̃ ⊢ γ2 : a2 ∼ b2 Γ; Γ̃ ⊢ γ3 : a3 ∼ b3 Γ ⊢ a1[γ2] : A Γ ⊢ b1[γ3] : B

Γ;∆ ⊢ γ1[γ2,γ3] : a1[γ2] ∼ b1[γ3]

An-Beta

Γ ⊢ a1 : B0 Γ ⊢ a2 : B1

|B0 | = |B1 | ⊨ |a1 | > |a2 |

Γ;∆ ⊢ red a1 a2 : a1 ∼ a2

An-Assn

⊢ Γ c : a ∼A b ∈ Γ c ∈ ∆

Γ;∆ ⊢ c : a ∼ b

Fig. 8. Type equality for DC

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

A Specification for Dependent Types in Haskell 31:17

Γ;∆ ⊢ γ : a ∼ b (Type equality (cont’d))

An-PiFst

Γ;∆ ⊢ γ : Π
ρx :A1 → B1 ∼ Π

ρx :A2 → B2

Γ;∆ ⊢ piFstγ : A1 ∼ A2

An-PiSnd

Γ;∆ ⊢ γ1 : (Πρx :A1 → B1) ∼ (Πρx :A2 → B2)
Γ;∆ ⊢ γ2 : a1 ∼ a2

Γ ⊢ a1 : A1 Γ ⊢ a2 : A2

Γ;∆ ⊢ γ1@γ2 : B1{a1/x} ∼ B2{a2/x}

An-CPiFst

Γ;∆ ⊢ γ : ∀c :ϕ1.A2 ∼ ∀c :ϕ2.B2

Γ;∆ ⊢ cpiFstγ : ϕ1 ∼ ϕ2

An-CPiSnd

Γ;∆ ⊢ γ1 : (∀c1 :a ∼A a′.B1) ∼ (∀c2 :b ∼B b′.B2)

Γ; Γ̃ ⊢ γ2 : a ∼ a′ Γ; Γ̃ ⊢ γ3 : b ∼ b′

Γ;∆ ⊢ γ1@(γ2 ∼ γ3) : B1{γ2/c1} ∼ B2{γ3/c2}

An-Cast

Γ;∆ ⊢ γ1 : a ∼ a′

Γ;∆ ⊢ γ2 : (a ∼A a′) ∼ (b ∼B b′)

Γ;∆ ⊢ γ1 ▷ γ2 : b ∼ b′

An-IsoSnd

Γ;∆ ⊢ γ : (a ∼A a′) ∼ (b ∼B b′)

Γ;∆ ⊢ isoSndγ : A ∼ B

An-EraseEq

Γ ⊢ a : A
Γ ⊢ b : B |a| = |b|

Γ; Γ̃ ⊢ γ : A ∼ B

Γ;∆ ⊢ (a |=|γ b) : a ∼ b

Γ;∆ ⊢ γ : ϕ1 ∼ ϕ2 (Prop equality)

An-PropCong

Γ;∆ ⊢ γ1 : A1 ∼ A2 Γ;∆ ⊢ γ2 : B1 ∼ B2 Γ ⊢ A1 ∼A B1 ok Γ ⊢ A2 ∼A B2 ok

Γ;∆ ⊢ (γ1 ∼A γ2) : (A1 ∼A B1) ∼ (A2 ∼A B2)

An-IsoConv

Γ;∆ ⊢ γ : A ∼ B Γ ⊢ a1 ∼A a2 ok Γ ⊢ a′
1
∼B a′

2
ok |a1 | = |a′1 | |a2 | = |a′2 |

Γ;∆ ⊢ conv (a1 ∼A a2) ∼γ (a′
1
∼B a′

2
) : (a1 ∼A a2) ∼ (a′

1
∼B a′

2
)

An-CPiFst

Γ;∆ ⊢ γ : ∀c :ϕ1.A2 ∼ ∀c :ϕ2.B2

Γ;∆ ⊢ cpiFstγ : ϕ1 ∼ ϕ2

An-IsoSym

Γ;∆ ⊢ γ : ϕ1 ∼ ϕ2

Γ;∆ ⊢ symγ : ϕ2 ∼ ϕ1

Fig. 9. Prop equality for DC

5.2 Explicit Equality Proofs
Figure 6 includes some of the syntax of the coercion proof terms that are available in DC. The

syntax figure does not include all of the coercions because their syntax makes little sense out of the

context of the rules that check them. Indeed, these proof terms merely record information found

in the rules of the analogous D judgments for type and prop equality. In other words, γ in the

coercion judgment Γ;∆ ⊢ γ : a ∼ b records the information contained in a derivation of a type

equality Γ;∆ ⊨ a ≡ b : A.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:18 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

However, there is some flexibility in the design of the judgment Γ;∆ ⊢ γ : a ∼ b. First, observe
that the syntax of the judgment does not include a component that corresponds to A, the type of a
and b in the implicit system. We do not include this type because it is unnecessary. In DC, a and
b have unique types. If we ever need to know what their types are, we can always recover them

directly from the context and the terms. (This choice mirrors the current implementation of GHC.)

Furthermore, we have flexibility in the relationship between the types of the terms in the coercion

judgment. Suppose we have Γ;∆ ⊢ γ : a ∼ b and Γ ⊢ a : A and Γ ⊢ b : B. Then there are three

possible ways we could have designed the system. We could require

(1) that A = B, i.e. that the types must be α−equivalent, or
(2) that |A| = |B|, i.e. that the types must be equal up to erasure, or

(3) that there must exist some coercion Γ;∆ ⊢ γ0 : A ∼ B that relates them.

There is also a fourth option—not enforcing any relationship between A and B to hold. However,

we cannot choose this option and still connect to the typed equality of D.

At first glance, the first option might seem the closest to D. After all, in that language, the two

terms must type check with exactly the same type. However, given that D includes implicit coercion,

that choice is overly restrictive—the two terms will also type check with definitionally equal types

too. Therefore, the third option is the closest to D.

As a result, our system admits the following property of the coercion judgment.

Lemma 5.6 (Coercion regularity
25
). If Γ;∆ ⊢ γ : a ∼ b then there exists some A, B and γ0, such

that Γ ⊢ a : A and Γ ⊢ b : B and Γ; Γ̃ ⊢ γ0 : A ∼ B.

Furthermore, allowing the two terms to have provably equal types leads to more compositional

rules than the first two options. For example, consider the application congruence rule, rule An-

AppCong. Due to dependency, the types of the two terms in the conclusion of this rule may not be

α-equivalent. If we had chosen the first option above, we would have to use the rule below instead,

which includes a coercion around one of the terms to make their types line up. In DC, the rule is

symmetric.

AltAn-AppCongEq

Γ;∆ ⊢ γ1 : a1 ∼ b1

Γ;∆ ⊢ γ2 : a2 ∼ b2 Γ ⊢ a1 a2

ρ
: A Γ ⊢ b1 b2

ρ
: B Γ;∆ ⊢ γ : B ∼ A

Γ;∆ ⊢ (γ1 γ
ρ
2
▷ γ) : (a1 a2

ρ) ∼ (b1 b2

ρ ▷ γ)

On the other hand, we follow Eisenberg [2016] and allow some asymmetry in the congruence

rules for syntactic forms with binders. For example, consider rule An-PiCong for showing two

Π-types equal via congruence (this rule is analogous to rule E-PiCong of the implicit system). Note

the asymmetry—the rule requires that the bodies of the Π-types be shown equivalent using a single

variable x of type A1. However, in the conclusion, we would like to create a proof of equivalence

for a Π-type where the bound variable has type A2. Therefore, the resulting right-hand-side type

must use a substitution to change the type of the bound variable.

Prior work [Gundry 2013; Weirich et al. 2013] included a symmetric rule instead of this one

because of concern that this rule would be difficult to implement in GHC. Eisenberg [2016] reports

that the opposite is true from his experience with GHC 8.0. The symmetric rule requires binding

three variables instead of one, while the substitution in the asymmetric version proved no difficulty.

The congruence rule for coercion abstraction types, rule An-CPiCong is similarly asymmetric.

This rule motivates the inclusion of rule An-IsoSym, a symmetry coercion between props. As in D,

this rule (like reflexivity and transitivity) is derivable from the analogous rules for type equality.

25
fc_invert.v:AnnDefEq_regularity

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

fc_invert.v:AnnDefEq_regularity

A Specification for Dependent Types in Haskell 31:19

Γ ⊢ a { b (DC reduction)
An-AppAbs

Γ ⊢ (λρx :A.w) aρ { w{a/x}

An-CAppCAbs

Γ ⊢ (Λc :ϕ .b)[γ] { b{γ/c}

An-Axiom

F ∼ a : A ∈ Σ1

Γ ⊢ F { a

An-AbsTerm

Γ ⊢ A : ⋆
Γ, x : A ⊢ b { b′

Γ ⊢ (λ−x :A.b) { (λ−x :A.b′)

An-Combine

Γ ⊢ (v ▷ γ1) ▷ γ2 { v ▷ (γ1;γ2)

An-Push

Γ; Γ̃ ⊢ γ : Π
ρx1 :A1 → B1 ∼ Π

ρx2 :A2 → B2

b′ = b ▷ sym (piFstγ)
γ ′ = γ@(b′ |=| (piFstγ) b)

Γ ⊢ (v ▷ γ) bρ { (v b′ρ) ▷ γ ′

An-CPush

Γ; Γ̃ ⊢ γ : ∀c1 :ϕ1.A1 ∼ ∀c2 :ϕ2.A2

γ ′
1
= γ1 ▷ sym (cpiFstγ)
γ ′ = γ@(γ ′

1
∼ γ1)

Γ ⊢ (v ▷ γ)[γ1] { (v[γ ′
1
]) ▷ γ ′

Fig. 10. DC single-step reduction (excerpt)

However, we need to refer to symmetry coercions in rules An-CPiCong and An-CAbsCong, so it

is convenient to have syntax for it available. Note that this rule is somewhat different from prior

work because we lack injectivity for equated types in propositions. However, this version is more

parallel to rules An-PiCong and An-AbsCong.

There is also a subtle issue related to rule An-CAbsCong, the congruence rule for coercion

abstractions, that we discovered in the process of proving the erasure theorem (5.4). In the case for

this rule, the premise that the types of the two abstractions are equal is not implied by regularity

(3.2). Instead, regularity gives us a coercion between B1 and B2 that could rely on c. However, the
congruence rule for coercion abstraction types does not allow this dependence, so the rule requires

an additional coercion γ4 to be equivalent to rule E-CAbsCong.

Figure 8 includes a rule not found in the implicit system, rule An-EraseEq. We can think of

this rule as a form of “reflexivity” because, according to D, the two terms a and b are the same,

i.e. they erase to the same result. However, even though the terms are erasure equivalent, they

may not have α-equivalent types due to embedded coercions. This rule will equate them as long as

their types are coercible. (Remember that we do not want to equate terms such as λ+x : Int.x and

λ+x :Bool.x that are erasure equivalent but do not have coercible types.)

Because coercions do not appear in D, they should never play a role in equality. As a result, we

have a form of “propositional irrelevance” for them. Therefore, we never need to show that two

coercions γ1 and γ2 that appear in terms are equal to each other—see for example rule An-CApp.

Furthermore, rule An-EraseEq provides coherence for our language—uses of coercion proofs (i.e.

a ▷ γ) do not interfere with equality. Prior work also include similar reasoning [Gundry 2013;

Weirich et al. 2013], but only allowed one coercion proof to be eliminated at a time. In contrast,

when viewed through the comparison with reflexivity in the implicit language, we can derive a

much more efficient way of stating coherence. Proofs using this rule may be significantly smaller

than in the prior system.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:20 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

5.3 Preservation and Progress for DC
The DC language also supports a preservation theorem for an annotated single-step reduction

relation (some rules appear in Figure 10, the full relation is shown in the extended version). This

reduction uses a typing context (Γ) to propagate annotations during evaluation. However, these
propagated annotations are irrelevant. The relation erases to the single-step relation for D which

does not require type information.

Lemma 5.7 (DC reduction erasure
26
). If Γ ⊢ a { b and Γ ⊢ a : A then ⊨ |a| { |b| or |a| = |b|.

We proved the preservation lemma for DC (shown below) directly. The lemma shown below is

stronger than the one we can derive from composing the erasure and annotation theorems with the

D preservation result. That version of the lemma does not preserve the type A through reduction.

Instead it produces a type B that is erasure-equivalent to A. However, our evaluation rules always

maintain α-equivalent types.

Lemma 5.8 (Preservation for DC
27
). If Γ ⊢ a : A and Γ ⊢ a { a′ then Γ ⊢ a′ : A.

However, there are properties that we can lift from D through the annotation and erasure lemmas.

For example, substitutivity and consistency directly carry over.

Lemma 5.9 (Substitutivity
28
). If Γ1, x : A, Γ2 ⊢ b : B and Γ1 ⊢ a1 : A and Γ1 ⊢ a2 : A and

Γ1;∆ ⊢ γ : a1 ∼ a2 then there exists a γ ′ such that Γ1, (Γ2{a1/x});∆ ⊢ γ ′ : b{a1/x} ∼ b{a2/x}.

Lemma 5.10 (Consistency for DC
29
). If Γ;∅ ⊢ γ : a ∼ b then consistent |a| |b|.

In fact, this consistency result is also the key to the progress lemma for the annotated language.

Before we can state that lemma, we must first define the analogue to values for the annotated

language. Values allow explicit type coercions at top level and in the bodies of irrelevant abstractions.

Definition 5.11 (Coerced values and Annotated values).

coerced values w ::= v | v ▷ γ
annotated values v ::= λ+x :A.b | λ−x :A.w | Λc :ϕ .a

| ⋆ | Πρx :A→ B | ∀c :ϕ .A

Lemma 5.12 (Progress for DC
30
). If Γ ⊢ a : A and Γ contains only irrelevant term variable

assumptions, then either a is a coerced value, or there exists some a′ such that Γ ⊢ a { a′.

Consistency lets us prove an analogous annotation theorem for DC reduction; as we can use it

to argue that coercions cannot block reduction. In other words, given any reduction in D, it can be

simulated by a sequence of DC reductions.

Lemma 5.13 (DC reduction annotation
31
). If ⊨ a { a′ and Γ ⊢ a0 : A0 and |a0 | = a, and Γ

contains only irrelevant term variable assumptions, then there exists some a′
0
such that |a′

0
| = a′ and

Γ ⊢ a0 {
∗ a′

0
.

6 DESIGN DISCUSSION
We have mentioned some of the factors underlying our designs of D and DC in the prior sections.

Here, we discuss some of these design choices in more detail.

26
fc_preservation.v:head_reduction_in_one

27
fc_preservation.v:preservation

28
congruence.v:an_congruence

29
fc_consist.v:AnnDefEq_consistent

30
fc_consist.v:progress

31
fc_consist.v:reduction_annotation

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

fc_preservation.v:head_reduction_in_one
fc_preservation.v: preservation
congruence.v: an_congruence
fc_consist.v: AnnDefEq_consistent
fc_consist.v: progress
fc_consist.v:reduction_annotation

A Specification for Dependent Types in Haskell 31:21

6.1 Prop Well-formedness and Annotation
In D, well-formed equality props (a ∼A b) require that a and b have the same typeA (see rule E-Wff).

The direct analogue for that rule in DC is the following:

AltAn-Wff

Γ ⊢ a : A Γ ⊢ b : B Γ; Γ̃ ⊢ γ : A ∼ B

Γ ⊢ a ∼γ b ok

However, DC actually places stronger restrictions on the type of A and B: instead of allowing a

coercion between them, rule An-Wff requires them to be erasure equivalent.

We designed rule An-Wff this way so that DC can use the same syntax for equality props as

D. Given a, b and A, we can easily access the type of b and determine whether A and B are equal

after erasure. However, we cannot necessarily determine whether there exists some coercion that

equates A and B. Therefore, to allow the more flexible rule above, we would need to annotate props

in DC with the coercion γ .
The A annotation is not actually needed for decidable type checking in DC as that type can easily

be recovered from a. However, we include this annotation in the prop to simplify the definition of

the erasure operation, shown in definition 5.1.

This stronger restriction for props is not problematic. Even with this restriction we can annotate

all valid derivations in D. In the case that the types are not erasure-equivalent in some proposition

in a derivation, we can always use a cast to make the two terms have erasure-equivalent types. In

other words, if we want to form a proposition that a : A and b : B are equal, where we have some

γ : A ∼⋆ B, we can use the proposition (a ▷ γ) ∼B b.

6.2 Heterogeneous vs. Homogeneous Equality
A homogeneous equality proposition is a four-place relation a : A ∼ b : B, where the equated terms

a and b are required to have definitionally equivalent types (A and B) for this proposition to be

well-formed. Because A and B are required to be equal, this relation is almost always written as

a three-place relation. In contrast, a heterogeneous equality proposition is a four place relation

a : A ∼ b : B, where the types of the equated terms may be unrelated [McBride 2000].

In the implicit language D, equality propositions are clearly homogeneous. But what about the

annotated language? The only equality defined for this language is α-equivalence. There is no
conversion rule. As a result, technically we have neither homogeneous equality nor heterogeneous

equality, as we require the two types to be related, but not with the “definitional equality” of that

language. However, we claim that because DC is an annotation of D, the semantics of the equality

proposition in DC is the same as that in D. So we use the terminology “homogeneous equality” to

refer to equality propositions in both languages.

Homogeneous equality is a natural fit for D. In this language we are required to include the type

of the terms in the judgment so we can know at what type they should be compared. Once we had

set up D with homogeneous equality, we were inspired to make it work with DC.

In contrast, prior work on similarly annotated languages uses heterogeneous equality [Eisenberg

2016; Gundry 2013; Weirich et al. 2013]. As a result, these languages also include a “kind coercion”

which extracts a proof of type equality from a proof of term equality. This kind coercion complicates

the metatheory of the language. In DC, such a coercion is unnecessary.

However, there is no drawback to using homogeneous equality in D and DC. In these languages,

we can define a heterogeneous equality proposition by sequencing homogeneous equalities. For

example, consider the following definition, where the proposition a ~ b is well-formed only

because it is preceded by the proposition k1 ~ k2.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:22 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

data Heq (a :: k1) (b :: k2) where
HRefl :: (k1 ~ k2, a ~ b) => Heq a b

With this encoding, we do not need the kind coercion, or any special rules or axioms. Pattern

matching for this datatype makes the kind equality available.

One motivation for heterogeneous equality is to support programming with dependently-typed

data structures in intensional type theories [McBride 2000]. In fact, the Idris language includes

heterogeneous equality primitively [Brady 2013]. In this setting, heterogeneous equality is necessary

to reason about equality between terms whose types are provably equivalent, but not definitionally

equivalent. However, in D and DC, we reflect equality propositions into definitional equality so

heterogeneous equality is not required for those examples.

Why did prior work use heterogeneous equality in the first place? Part of the reason was to design

compositional rules for type coercions, such as rule An-AppCong (and the symmetric version of

rule An-AbsCong). However, this work shows that we can have compositional congruence rules

in the presence of homogeneous equality.

6.3 Can We Erase More?
D differs from some Curry-style presentations of irrelevant quantification by marking the locations

of irrelevant abstractions and applications [Miquel 2001]. We could imagine replacing our rules

for irrelevant argument introduction and elimination with the following alternatives, which allow

generalization and instantiation at any point in the derivation.

EA-IrrelAbs

Γ ⊨ A : ⋆ Γ, x : A ⊨ a : B x < fva

Γ ⊨ a : Π
−x :A→ B

EA-IrrelApp

Γ ⊨ a : Π
−x :A→ B Γ ⊨ b : A

Γ ⊨ a : B{b/x}

Adding these rules does not require us to change the annotated language DC. Instead, we would

only need to modify the erasure operation to completely remove such abstractions and applications.

However, this change complicates the metareasoning of D as Π− quantifiers can appear anywhere
in a derivation. For example, the inversion lemma 4.3 would allow the type A to be headed by any

number of implicit binders before the explicit one. This seems possible, but intricate, so we decided

to forgo this extension for a simpler system. We may revisit this decision in future work.

On the other hand, while we can contemplate this change for irrelevant quantification, we

definitely cannot make an analogous change for coercion abstraction because it would violate type

safety. In particular, coercion abstractions can assume bogus equalities (like one between Int and
Bool) and these equalities can be used to type check a stuck program.

Previous work by Cretin [2014] and Cretin and Rémy [2014] introduced a calculus built around

consistent coercion abstraction. Their mechanism allows implicit abstraction over coercions, pro-

vided those coercions are shown instantiable. However, unlike the coercion abstraction used here,

consistent coercion abstraction cannot be used to implement GADTs.

6.4 Variations on the Annotated Language
The annotated language, DC, that we have developed in this paper is only one possible way of

annotating D terms to form an equivalent decidable, syntax-directed system. We have already

discussed some alternative designs in Section 5.2. However, there are two more variants that are

worth further exploration.

First, consider a version of the annotated language that calculates unique types, but only up

to erasure-equivalence. This version is equivalent to adding the following conversion rule to DC,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

A Specification for Dependent Types in Haskell 31:23

which allows any type to be replaced by one that is erasure equivalent.

AltAn-Conv

Γ ⊢ a : A |A| = |B|

Γ ⊢ a : B

Because of this built-in treatment of coherence, this version of the language provides a more efficient

implementation. In particular, the types of arguments do not necessarily need to be identical to

the types that functions expect; they need only erase to the same result. Thus terms require fewer

explicit coercions. Eisenberg reported that a related variant of this system was simpler to implement

in GHC 8.0. He also explored a variant of this system in his dissertation (see Appendix F).

Second, note that we have made no efforts to compress the annotations required by DC. It is

likely that there are versions of the language that can omit some of these annotations. In particular,

bidirectional type checking [Pierce and Turner 2000] often requires fewer annotations for terms in

normal form. Here, the balance is between code size (from a bidirectional system) and simplicity

(from DC). GHC’s optimizer must manipulate these typed terms; having simpler rules about where

annotations are required makes this job easier. On the other hand, there are known situations

where type annotations cause a significant blow up in code size, so it is worth exploring other

options, such as rules proposed by Jay and Peyton Jones [2008].

Overall, even though DC may vary, none of these changes will affect D; indeed we should be

able to prove analogous erasure and annotation theorems for each of these versions. The ability to

contemplate these alternate versions is an argument in favor of the design of D; by rooting ourselves

to the simpler language D, we can consider a variety of concrete implementable languages.

7 MECHANIZED METATHEORY
All of the definitions, lemmas and proofs in this paper aremechanized in the Coq proof assistant [Coq

development team 2004], using tactics from the ssreflect library [Gonthier et al. 2016]. We used the

Ott tool [Sewell et al. 2010] to generate both the typeset rules in this paper and the Coq definitions

that were the basis of our proofs. Our formalization uses a locally nameless representation of

terms and variable binding. Some of the proofs regarding substitution and free variables were

automatically generated from our language definition via the LNgen tool [Aydemir and Weirich

2010]. Our total development includes our 1,400 line Ott specification, about 17,000 nonblank lines

of Coq proofs, plus another 13,000 lines of Coq generated by Ott and LNgen.

7.1 Decidability Proof
Most of our Coq development follows standard practice of proofs by induction over derivations

represented with Coq inductive datatypes. Our proof that type checking DC is decidable required

a different style of argument. In other words, we essentially implemented a type checker for DC

as a dependently-typed functional program in Coq; this function returns not only whether the

input term type checks, but also a justification of its answer. If the term type checks, the checking

function returns its type as well as a derivation for that type. Alternatively, if the term does not

type check, then the checking function returns a proof that there is no derivation, for any type.

We used Coq’s Program feature to separate the definition of the type checking function from the

proof that it returns the correct result [Sozeau 2008].
32
We took advantage of notations so that

the definition of type checker more closely resembles a functional program. This style of proof is

convenient because the computation itself naturally drives the proof flow—in particular, all the

branching is performed in the functions, and thus none of it has to be done during the proofs.

Furthermore, many of the proof obligations could be discharged automatically.

32
fc_dec_fun:AnnTyping_dec

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

fc_dec_fun:AnnTyping_dec

31:24 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

The most difficult part of this definition was showing that the type checking function actually

terminates. We separated this reasoning from the type checker itself by defining an inductive

datatype representing the “fuel” required for type checking,
33
and then showed that we could

calculate that fuel from the size of the term [Bove and Capretta 2005].
34

Proving termination was complicated for two reasons. First, the running time of the algorithm

that results from a syntax-directed reading of the DC typing rules is not a linear function of

the size of the input term. This is because these rules check the typing context in every leaf

of the typing derivation (rules An-Var, An-Star, and An-Fam). Instead of following the rules

exactly, we programmed the type checker to ensure the validity of the context whenever new

assumptions were added and proved that this was equivalent. Second, some typing premises in the

rules are merely to access the types of subterms that are already known to be correct. To simplify

the termination argument, we replaced these recursive calls to the typechecker with calls to an

auxiliary function that calculates the type of an annotated term, assuming that the term has already

been checked.
35
Interestingly, these changes not only made the type checker more efficient and the

termination argument more straightforward, but they also occasionally simplified the correctness

argument.

7.2 Why Mechanize?
Producing this proof took significant effort, much more than if we had produced a paper description

of the results. We undertook this effort partly because reasoning about dependently-typed languages

in the presence of nontermination is dangerous. Indeed, including ⋆ : ⋆ leads to inconsistent

logics [Martin-Löf 1971], but not necessarily unsafe languages [Cardelli 1986].

In fact, some proofs that appear in both Weirich et al. [2013] and Gundry [2013] are flawed as

reported by Eisenberg [2016]. Eisenberg shows how to repair the consistency proof and does so for

his PiCo language. However, this repair is only relevant to languages with heterogeneous equality.

Furthermore, DC is an admittedly complex language, especially when it comes to the coercion

rules (Figures 8 and 9). In the course of our development, we made many changes to our designs in

our efforts to prove our desired results. These changes were, of course, motivated by failed proofs

due to unexpected interactions in the subtleties of the system. We are not at all confident that we

would have seen all of these issues with a purely paper proof.

At the same time, we found the effort in producing a mechanized proof to be more enjoyable

than that of paper proofs. Mechanization turns the proof process into a software engineering

effort: multiple authors may work together and always be aware of the status of each other’s work.

Furthermore, we expect that our artifact itself will be useful for future experimentation (perhaps

with some of the design variations and extensions that we describe below). Certainly, we have

found it useful for quickly ascertaining the impact of a design change throughout the development.

8 RELATEDWORK
8.1 Prior Versions of FC with Dependency
The most closely related works to this paper are Weirich et al. [2013], Gundry’s dissertation [2013]

and Eisenberg’s dissertation [2016]. The current work is the only version to define an implicitly-

typed language in addition to DC, a language whose design directly influenced the design of the

more practical DC. Furthermore, as we have discussed previously, this variant of FC contains several

technical distinctions from prior work, which we summarize here.

33
fc_dec_fun.v:fuel_tpg

34
fc_dec.v:fuel_at

35
fc_get.v:get_tpg

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

fc_dec_fun.v:fuel_tpg
fc_dec.v:fuel_at
fc_get.v:get_tpg

A Specification for Dependent Types in Haskell 31:25

We have already discussed in detail the three main differences: that this language uses homoge-

neous equality instead of heterogeneous equality (Section 6.2), that this system is paired with an

implicit language (Section 3), and that all of our proofs have been formalized in Coq (Section 7).

Other more minor technical improvements include:

• This system admits a substitutivity lemma (Lemma 4.9), which Eisenberg was unable to show.

Substitutivity is not necessary for safety, though the computational content of this lemma is

useful in GHC for optimization.

• This system uses an available set (∆) to restrict the use of coercion assumptions in rules E-

CAbsCong and An-CAbsCong. Weirich et al. used an (invalid) check of how the coercion

variable was used in the coercion, and Eisenberg repaired this check with the “almost devoid”

relation. However, this approach is not available for D because it does not include explicit

coercions. Instead, we use available sets in both languages, both simplifying the check and

making it more generally applicable.

• This system includes a signature for general recursive definitions (Section 3.2), following

Gundry. In contrast, Eisenberg only includes a fix term and Weirich et al. reuses coercion

assumptions for recursive definitions.

• This system includes a separate definition of equality for propositions (unlike all prior work).

As a result, it includes injectivity only where needed (Section 3.4).

• Following Eisenberg, this system includes an asymmetric rule for congruence rules with

binders as opposed to the symmetric rule proposed in Weirich et al. and also used by Gundry

(Section 5.2).

8.2 Other Related Calculi
Geuvers and Wiedijk [2004] and van Doorn et al. [2013] develop variants of pure type systems

that replace implicit conversions with explicit convertibility proofs. Like this work, they show that

the system with explicit equalities is equivalent to the system with implicit equalities, and include

asymmetric rules for congruence with binders. However, there are several key differences. First,

their work is based in intensional type theory and does not include coercion abstractions. Second,

they also use heterogeneous equality instead of homogeneous equality. Finally, their work is based

on Pure Type Systems, generalizing over sorts, rules and axioms; whereas we consider only a single

instance here. However, given the context of GHC, this generality is not necessary.

The Trellys project developed novel languages for dependently-typed programming, such as

Sep
3
[Kimmel et al. 2013] and Zombie [Casinghino et al. 2014; Sjöberg and Weirich 2015]. As here,

these languages include nontermination, full-spectrum dependent types and irrelevant arguments.

Furthermore, the semantics are specified via paired annotated and erased languages. However,

unlike this work, the Trellys project focused on call-by-value dependently-typed languages with

heterogeneous equality, and on the interaction between terminating and nonterminating compu-

tation. In Sep
3
the terminating language is a separate language from the computation language,

whereas in Zombie it is defined as a sublanguage of computation via the type system. Neither

language includes a separate abstraction form for equality propositions.

Yang et al. [2016] also develop a full-spectrum dependently-typed calculus with type-in-type and

general recursion. As in this work, they replace implicit conversion with explicit casts to produce

a language with decidable type checking. However, their system is much less expressive: it lacks

implicit quantification and any sort of propositional equality for first-class coercions.

In addition, many dependent type systems support irrelevant arguments. The specific treatment

in this paper is derived in D from Miquel [2001] and in DC from Barras and Bernardo [2008]. We

chose this formalism because of the necessary machinery (free variable checks) need only appear in

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:26 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

the rules involving irrelevant abstractions. However, this is not the only mechanism for enforcing

irrelevance; we could have alternatively used the context to mark variables that are restricted to

appear only in irrelevant locations [Brady 2005; Eisenberg 2016; Gundry 2013; Pfenning 2001].

8.3 Intensional Type Theory
The dependent type theory that we develop here is different in many ways from existing type

theories, such as the ones that underlie other dependently-typed languages such as Epigram, Agda,

Idris, or Coq. These languages are founded on intensional type theory [Coquand 1986; Martin-Löf

1975], a consistent foundation for mathematics. In contrast, Haskell is a nonterminating language,

and thus inconsistent when viewed as a logic. Because Haskell programs do not always terminate,

they cannot be used as proofs without running them first. As a result, our language has three major

differences from existing type theories:

• Type-in-type. Terminating dependently-typed languages require polymorphism to be strati-

fied into a hierarchy of levels, lest they permit an encoding of Girard’s paradox [Girard 1972].

This stratification motivates complexities in the design of the language, such as cumulativ-

ity [Martin-Löf 1984] or level polymorphism [Norell 2007]. However, because Haskell does

not require termination, there is no motivation for stratification. Programmers have a much

simpler system when this hierarchy is collapsed into a single level with the addition of the

⋆ : ⋆ axiom. But, although languages with type-in-type have been proposed before [Martin-

Löf 1971] (and been proven type sound [Cardelli 1986]), there is significantly less research

into their semantics than there is for intensional type theories.

• Syntactic type theory. Type theories are often extended through the use of axioms. For example,

adding the law of the excluded middle produces a classical type theory. We include axioms

for type constructor injectivity, which is sometimes referred to as “syntactic” type theory.

However, syntactic type theories are known to be inconsistent with classical type theory,

as well as other extensions [Hur 2010; Miquel 2010]. As a result, they have not been as well

studied.

• Separation between terms and coercions. Because the term language may not terminate, DC

coercions come from a separate, consistent language for reasoning about equality in DC.

Propositional equalities are witnessed by coercions instead of computational proofs. This

distinction means that coercions are not relevant at runtime and may be erased. Furthermore,

DC’s form of propositional equality has a flavor of extensional type theory [Martin-Löf

1984]—equality proofs, even assumed ones, can be used without an elimination form.

8.4 Other Programming Languages with Dependent Types
Our goal is to extend a mature, existing functional programming language with dependent types,

in a way that is compatible with existing programs. However, instead of extending an existing

language, other projects seek to design new dependently-typed languages from scratch.

The Cayenne Language [Augustsson 1998] was an early prototype in this area. This language

was a full-spectrum dependently-typed language, inspired by Haskell. It was implemented as a

new typechecker over an existing Haskell implementation, but unlike Dependent Haskell was not

intended to be backwards compatible with Haskell. Furthermore, with this architecture, dependent

types are only available at the source level—the implementation did not use a strongly typed core

language for optimization. In addition, the type system of Cayenne was derived from intensional

type theory, so differs from that of D and DC. In particular, in Cayenne the kind ⋆ is stratified into

a universe hierarchy. This ensures (a) type-level computation terminates (necessary for soundness)

and (b) that types can be erased prior to runtime. No other irrelevant arguments can be erased.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

A Specification for Dependent Types in Haskell 31:27

More recent languages, based on intensional type theory, include Epigram [McBride 2004],

Agda [Norell 2007], and Idris [Brady 2013]. Of these, Idris is the most advanced current language

designed for practical dependently-typed programming. Because these languages are based on

intensional type theory, their type systems differ from Dependent Haskell, as mentioned above. On

the other hand, as practical tools for programming with dependent types, they do support erasure

of irrelevant information.

9 CONCLUSIONS AND FUTUREWORK
This paper presents two strongly coupled versions of a full-spectrum core calculus for dependent

types including nontermination, irrelevant arguments and first class equality coercions. Although

these calculi were designed with GHC in mind, we find this new approach to dependently-typed

programming exciting in its own right.

In future work, we plan to extend these calculi with more features of GHC, including recur-

sive datatypes and pattern matching, and type system support for efficient compilation, such as

roles [Breitner et al. 2014], and levity polymorphism [Eisenberg and Peyton Jones 2017]. For the

former, we may follow prior work and add datatypes as primitive constructs. However, we are also

excited about adopting some of the technology in Cedille [Stump 2016], which would allow us to

encode dependent pattern matching with minimal extension.

We also would like to extend the definition of type equality in this language. The more terms

that are definitionally equal, the more programs that will type check. Some extensions we plan

to consider include rules such as η-equivalence or additional injectivity rules, including those for

type families [Stolarek et al. 2015]. We also hope to extend prop equality with more semantic

equivalences between propositions.

Finally, because our first-class equality is irrelevant we cannot extend this equality directly

with ideas from cubical type theory [Angiuli et al. 2017; Bezem et al. 2014]. However, we would

also like to explore alternative treatment of coercions that are not erased, so that we can add

higher-inductive types to GHC.

ACKNOWLEDGMENTS
Thanks to Simon Peyton Jones, Adam Gundry, Iavor Diatchki and Pritam Choudhury for feedback

and suggestions. This material is based upon work supported by the National Science Foundation

under Grant No. 1319880 and Grant No. 1521539. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily reflect

the views of the National Science Foundation.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

31:28 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

REFERENCES
Carlo Angiuli, Robert Harper, and Todd Wilson. 2017. Computational higher-dimensional type theory. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages. ACM, 680–693.

David Aspinall and Martin Hoffman. 2005. Dependent Types. MIT Press, 45–86. http://www.cis.upenn.edu/~bcpierce/attapl/

Lennart Augustsson. 1998. Cayenne—a language with dependent types. In Proc. ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98). ACM, 239–250.

Brian Aydemir and Stephanie Weirich. 2010. LNgen: Tool Support for Locally Nameless Representations. Technical Report
MS-CIS-10-24. Computer and Information Science, University of Pennsylvania.

Henk Barendregt. 1991. Introduction to generalized type systems. J. Funct. Program. 1, 2 (1991), 125–154.
Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent

Types. In Foundations of Software Science and Computational Structures (FOSSACS 2008), Roberto Amadio (Ed.). Springer

Berlin Heidelberg, Budapest, Hungary, 365–379.

Marc Bezem, Thierry Coquand, and Simon Huber. 2014. A model of type theory in cubical sets. In 19th International
Conference on Types for Proofs and Programs (TYPES 2013), Vol. 26. 107–128.

A. Bove and V. Capretta. 2005. Modelling General Recursion in Type Theory. Mathematical Structures in Computer Science
15 (February 2005), 671–708. Cambridge University Press.

Edwin Brady. 2005. Practical Implementation of a Dependently Typed Functional Programming Language. Ph.D. Dissertation.
Durham University.

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation.

J. Funct. Prog. 23 (2013).
Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie Weirich. 2014. Safe Zero-cost Coercions for

Haskell. In International Conference on Functional Programming (ICFP ’14). ACM.

Luca Cardelli. 1986. A Polymorphic Lambda Calculus with Type:Type. Technical Report 10. Degital Equipment Corporation,

SRC.

Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. 2014. Combining Proofs and Programs in a Dependently Typed

Language. In POPL 2014: 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. San Diego,

CA, USA, 33–45.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. 2005. Associated Type Synonyms. In International
Conference on Functional Programming (ICFP ’05). ACM.

James Cheney and Ralf Hinze. 2003. First-Class Phantom Types. Technical Report. Cornell University.
Coq development team. 2004. The Coq proof assistant reference manual. LogiCal Project. http://coq.inria.fr Version 8.0.

Thierry Coquand. 1986. A Calculus of Constructions. (Nov. 1986). manuscript.

Julien Cretin. 2014. Erasable coercions: a unified approach to type systems. Ph.D. Dissertation. Université Paris Diderot (Paris
7).

Julien Cretin and Didier Rémy. 2014. System F with Coercion Constraints. In Logics In Computer Science (LICS). ACM.

Haskell B. Curry, J. Roger Hindley, and J.P. Seldin (Eds.). 1972. Combinatory logic: Volume II. Amsterdam: North-Holland

Pub. Co.

Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Conference Record of the 9th
Annual ACM Symposium on Principles of Programming Languages. ACM Press, New York, 207–12.

Peter Dybjer and Anton Setzer. 1999. A finite axiomatization of inductive-recursive definitions. In Typed Lambda Calculi
and Applications, volume 1581 of Lecture Notes in Computer Science. Springer, 129–146.

Richard A. Eisenberg. 2016. Dependent Types in Haskell: Theory and Practice. Ph.D. Dissertation. University of Pennsylvania.
Richard A. Eisenberg and Simon Peyton Jones. 2017. Levity Polymorphism. In PLDI ’17. To appear.

Richard A. Eisenberg, StephanieWeirich, and Hamidhasan G. Ahmed. 2016. Visible Type Application. In European Symposium
on Programming (ESOP). 229–254.

H. Geuvers and F. Wiedijk. 2004. A logical framework with explicit conversions. In LFM’04, Proceedings of the Fourth
International Workshop on Logical Frameworks and Meta-Languages, Cork, Ireland, Carsten Schuermann (Ed.). 32–45.

Jean-Yves Girard. 1971. Une Extension De L’Interpretation De Gödel à L’Analyse, Et Son Application à L’Élimination Des

Coupures Dans L’Analyse Et La Theorie Des Types. In Proceedings of the Second Scandinavian Logic Symposium, J.E.

Fenstad (Ed.). Studies in Logic and the Foundations of Mathematics, Vol. 63. Elsevier, 63 – 92. http://www.sciencedirect.

com/science/article/pii/S0049237X08708437

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D.
Dissertation. Université Paris 7.

Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2016. A Small Scale Reflection Extension for the Coq system. Research

Report RR-6455. Inria Saclay Ile de France. https://hal.inria.fr/inria-00258384

Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

http://www.cis.upenn.edu/~bcpierce/attapl/
http://coq.inria.fr
http://www.sciencedirect.com/science/article/pii/S0049237X08708437
http://www.sciencedirect.com/science/article/pii/S0049237X08708437
https://hal.inria.fr/inria-00258384

A Specification for Dependent Types in Haskell 31:29

Chung-Kil Hur. 2010. Agda with the excluded middle is inconsistent? URL https://lists.chalmers.se/pipermail/agda/2010/

001522.html.. (2010).

Barry Jay and Simon Peyton Jones. 2008. Scrap Your Type Applications. In Proceedings of the 9th International Conference
on Mathematics of Program Construction (MPC ’08). Springer-Verlag, Berlin, Heidelberg, 2–27. https://doi.org/10.1007/
978-3-540-70594-9_2

Garrin Kimmel, Aaron Stump, Harley D. Eades, Peng Fu, Tim Sheard, Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg,

Nathin Collins, and Ki Yunh Anh. 2013. Equational reasoning about programs with general recursion and call-by-value

semantics. Progress in Informatics 10 (March 2013), 19–48. http://www.nii.ac.jp/pi/

Per Martin-Löf. 1971. A Theory of Types. (1971). Unpublished manuscript.

Per Martin-Löf. 1975. An intuitionistic theory of types: predicative part. In Logic Colloquium ’73, Proceedings of the
Logic Colloquium, H.E. Rose and J.C. Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80.

North-Holland, 73–118.

Per Martin-Löf. 1984. Intuitionistic type theory. Studies in Proof Theory, Vol. 1. Bibliopolis. iv+91 pages.

Conor McBride. 2000. Elimination with a Motive. In Types for Proofs and Programs, International Workshop, TYPES 2000,
Durham, UK, December 8-12, 2000, Selected Papers. 197–216. https://doi.org/10.1007/3-540-45842-5_13

Conor McBride. 2004. Epigram. (2004). http://www.dur.ac.uk/CARG/epigram.

Alexandre Miquel. 2001. The Implicit Calculus of Constructions Extending Pure Type Systems with an Intersection Type Binder
and Subtyping. Springer Berlin Heidelberg, Berlin, Heidelberg, 344–359. https://doi.org/10.1007/3-540-45413-6_27

Alexandre Miquel. 2010. Re: Agda with the excluded middle is inconsistent? URL https://lists.chalmers.se/pipermail/agda/

2010/001543.html. (2010).

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for

arbitrary-rank types. Journal of Functional Programming 17, 1 (Jan. 2007), 1–82.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. 2006. Simple unification-based

type inference for GADTs. In International Conference on Functional Programming (ICFP). Portland, OR, USA, 50–61.
Frank Pfenning. 1992. On the Undecidability of Partial Polymorphic Type Reconstruction. Technical Report. Pittsburgh, PA,

USA.

F. Pfenning. 2001. Intensionality, extensionality, and proof irrelevance in modal type theory. In Proceedings 16th Annual
IEEE Symposium on Logic in Computer Science. 221–230. https://doi.org/10.1109/LICS.2001.932499

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000), 1–44.
https://doi.org/10.1145/345099.345100

John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium, B. Robinet (Ed.). Lecture Notes in

Computer Science, Vol. 19. Springer Berlin Heidelberg, 408–425. http://dx.doi.org/10.1007/3-540-06859-7_148

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. 2008. Type checking with open type

functions. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN international conference on Functional programming. ACM,

New York, NY, USA, 51–62.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, and Rok Strniša. 2010.

Ott: Effective tool support for the working semanticist. Journal of Functional Programming 20, 1 (Jan. 2010).

Vilhelm Sjöberg and Stephanie Weirich. 2015. Programming up to Congruence. In POPL 2015: 42nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Mumbai, India, 369–382.

Matthieu Sozeau. 2008. Un environnement pour la programmation avec types dépendants. Ph.D. Dissertation. Université Paris
11, Orsay, France.

Jan Stolarek, Simon Peyon Jones, and Richard A. Eisenberg. 2015. Injective Type Families for Haskell. In Haskell Symposium
(Haskell ’15). ACM.

Aaron Stump. 2016. The Calculus of Dependent Lambda Eliminations. (Sept. 2016). http://homepage.cs.uiowa.edu/~astump/

papers/cedille-draft.pdf Submitted for publication.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. 2007. System F with type equality

coercions. In Types in languages design and implementation (TLDI ’07). ACM.

Floris van Doorn, Herman Geuvers, and Freek Wiedijk. 2013. Explicit Convertibility Proofs in Pure Type Systems. In

Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical Frameworks & Meta-languages: Theory
& Practice (LFMTP ’13). ACM, New York, NY, USA, 25–36.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X) Modular type inference

with local assumptions. Journal of Functional Programming 21 (2011), 333–412. Issue Special Issue 4-5. https://doi.org/10.

1017/S0956796811000098

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

https://lists.chalmers.se/pipermail/agda/2010/001522.html
https://lists.chalmers.se/pipermail/agda/2010/001522.html
https://doi.org/10.1007/978-3-540-70594-9_2
https://doi.org/10.1007/978-3-540-70594-9_2
http://www.nii.ac.jp/pi/
https://doi.org/10.1007/3-540-45842-5_13
http://www.dur.ac.uk/CARG/epigram
https://doi.org/10.1007/3-540-45413-6_27
https://lists.chalmers.se/pipermail/agda/2010/001543.html
https://lists.chalmers.se/pipermail/agda/2010/001543.html
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1145/345099.345100
http://dx.doi.org/10.1007/3-540-06859-7_148
http://homepage.cs.uiowa.edu/~astump/papers/cedille-draft.pdf
http://homepage.cs.uiowa.edu/~astump/papers/cedille-draft.pdf
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1017/S0956796811000098

31:30 Weirich, Voizard, Azevedo de Amorim, and Eisenberg

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. 2008. FPH: First-class polymorphism for Haskell. In ICFP
2008: The 13th ACM SIGPLAN International Conference on Functional Programming. Victoria, BC, Canada, 295–306.

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with Explicit Kind Equality. In International
Conference on Functional Programming (ICFP ’13). ACM.

J.B. Wells. 1999. Typability and type checking in System F are equivalent and undecidable. Annals of Pure and Applied Logic
98, 1 (1999), 111 – 156.

A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (Nov. 1994), 38–94.

https://doi.org/10.1006/inco.1994.1093

Yanpeng Yang, Xuan Bi, and Bruno C. d. S. Oliveira. 2016. Unified Syntax with Iso-types. Springer International Publishing,
Cham, 251–270. https://doi.org/10.1007/978-3-319-47958-3_14

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

2012. Giving Haskell a promotion. In Types in Language Design and Implementation (TLDI ’12). ACM.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 31. Publication date: September 2017.

https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1007/978-3-319-47958-3_14

	Abstract
	1 Introduction
	2 System D, System DC and the design of Dependent Haskell
	3 System D: A Language with Implicit Equality Proofs
	3.1 Evaluation
	3.2 Typing
	3.3 Definitional Equality
	3.4 Equality Propositions Are Not Types

	4 Type Soundness for System D
	4.1 Preservation
	4.2 Progress and Consistency

	5 System DC: An explicitly-typed language
	5.1 The Design of DC
	5.2 Explicit Equality Proofs
	5.3 Preservation and Progress for DC

	6 Design Discussion
	6.1 Prop Well-formedness and Annotation
	6.2 Heterogeneous vs. Homogeneous Equality
	6.3 Can We Erase More?
	6.4 Variations on the Annotated Language

	7 Mechanized metatheory
	7.1 Decidability Proof
	7.2 Why Mechanize?

	8 Related Work
	8.1 Prior Versions of FC with Dependency
	8.2 Other Related Calculi
	8.3 Intensional Type Theory
	8.4 Other Programming Languages with Dependent Types

	9 Conclusions and Future Work
	Acknowledgments
	References

